[1]王文标,田志远,汪思源,等.交叉分段PCA在锅炉故障诊断中的应用[J].信息与控制,2020,49(4):507-512.
WANG Wenbiao,TIAN Zhiyuan,WANG Siyuan,et al.Application of cross sectional PCA in boiler fault diagnosis [J].Information and Control,2020,49(4):507-512.
[2]冯珑.基于故障树的火电厂金属壁锅炉设备故障诊断方法研究[J].世界有色金属,2016(11):39-40.
FENG Long.Research on fault diagnosis method of metal wall boiler equipment in thermal power plant based on Fault Tree [J].World Nonferrous Metals,2016(11):39-40.
[3]SIMONE B,THUAN L,ONDREJ H,et al.Real-time monitoring energy efficiency and performance degradation of condensing boilers [J].Energy Conversion and Management,2017,136:329-339.
[4]ZHU Y,GENG L.Research on SDG fault diagnosis of ocean shipping boiler system based on fuzzy granular computing under data fusion [J].Polish Maritime Research,2018,25(S2):92-97.
[5]刘海桂.机械设备故障诊断与监测的常用方法及其发展趋势[J].信息记录材料,2019,20(12):214-215.
LIU Haigui.Common methods and development trend of mechanical equipment fault diagnosis and monitoring [J].Information Recording Materials,2019,20(12):214-215.
[6]牛培峰,张泽,王怀宝.基于模糊聚类神经网络的电站锅炉故障诊断研究[J].微计算机信息,2010,26(7):40-42.
NIU Peifeng,ZHANG Ze,WANG Huaibao.Study on fault diagnosis of power plant boiler based on fuzzy clustering neural network [J].Microcomputer Information,2010,26(7):40-42.
[7]许裕栗,张静,李柠,等.基于数据挖掘的锅炉在线运行状态监测[J].热能动力工程,2019,34(2):82-87,115.
XU Yuli,ZHANG Jing,LI Ning,et al.Online monitoring of boiler operation based on data mining [J].Thermal Power Engineering,2019,34(2):82-87,115.
[8]邱文严.基于小波神经网络火电厂锅炉故障诊断的仿真研究[J].煤矿机械,2012,33(9):269-271.
QIU Wenyan.Simulation research on boiler fault diagnosis of thermal power plant based on wavelet neural network [J].Coal Mine Machinery,2012,33(9):269-271.
[9]高鹤元,甘辉兵,郑卓,等.粒子群优化神经网络在船舶辅锅炉故障诊断中的应用[J].计算机应用与软件,2020,37(8):137-141,148.
GAO Heyuan,GAN Huibing,ZHENG Zhuo,et al.Application of particle swarm optimization neural network in fault diagnosis of marine auxiliary boiler [J].Computer Applications and Software,2020,37(8):137-141,148.
[10]姜继伟.循环流化床锅炉故障诊断专家系统研究[D].青岛:中国石油大学(华东),2009.
[11]石宁.基于模糊专家系统的锅炉故障诊断方法的研究[D].沈阳:沈阳理工大学,2010.
[12]于大鹏,赵德有,汪玉.螺旋桨鸣音的混沌动力特性研究[J].声学学报,2010,35(5):530-538.
YU Dapeng,ZHAO Deyou,WANG Yu.Chaotic dynamic characteristics of propeller chirp [J].Acta Acoustics,2010,35(5):530-538.
[13]刘敏,范红波,张英堂,等.机械振动信号自适应多尺度非线性动力学特征提取方法研究[J].振动与冲击,2020,39(14):224-232,250.
LIU Min,FAN Hongbo,ZHANG Yingtang,et al.Research on adaptive multi-scale nonlinear dynamic feature extraction method of mechanical vibration signal [J].Vibration and Shock,2020,39(14):224-232,250.
[14]席乐乐.基于混沌理论的BCG信号非线性特性分析[D].桂林:桂林电子科技大学,2019.
[15]付强,李晨溪,张朝曦.关于G-P算法计算混沌关联维的讨论[J].解放军理工大学学报(自然科学版),2014,15(3):275-282.
FU Qiang,LI Chenxi,ZHANG Chaoxi.Discussion on the calculation of chaos correlation dimension by G-P algorithm [J].Journal of PLA University of Science and Technology (Natural Science Edition),2014,15(3):275-282.
[16]韩雪琼.混沌系统的Lyapunov维数[D].合肥:合肥工业大学,2017.
[17]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2005.
[1]马成正.基于概率神经网络的液氨汽车罐车复合故障诊断[J].中国安全生产科学技术,2011,7(3):114.
MA Cheng-zheng.Compound Fault Diagnosis of Liquid Ammonia Tank Car Based on Probabilistic Neural Network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(12):114.
[2]李佃祥,于洪国,周江涛.油管静水试压装置安全控制系统设计与开发[J].中国安全生产科学技术,2012,8(12):103.
LI Dian xiang,YU Hong guo,ZHOU Jiang tao.Design and development of safe control system of tubing hydraulic pressure experiment equipment[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):103.
[3]雷雨,吴超,王秉.人对声信号的安全认知模型构建及其应用[J].中国安全生产科学技术,2018,14(6):27.[doi:10.11731/j.issn.1673-193x.2018.06.004]
LEI Yu,WU Chao,WANG Bing.Construction and application of safety cognition model for human to acoustic signals[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(12):27.[doi:10.11731/j.issn.1673-193x.2018.06.004]
[4]刘剑,刘丽,黄德,等.基于风量-风压复合特征的通风系统阻变型故障诊断[J].中国安全生产科学技术,2020,16(1):85.[doi:10.11731/j.issn.1673-193x.2020.01.014]
LIU Jian,LIU Li,HUANG De,et al.Resistance variant fault diagnosis of ventilation system based on composite features of air volume and air pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(12):85.[doi:10.11731/j.issn.1673-193x.2020.01.014]
[5]倪景峰,乐晓瑞,常立峰,等.基于决策树的矿井通风阻变型故障诊断及传感器优化布置*[J].中国安全生产科学技术,2021,17(2):34.[doi:10.11731/j.issn.1673-193x.2021.02.005]
NI Jingfeng,LE Xiaorui,CHANG Lifeng,et al.Resistance variant fault diagnosis and optimized layout of sensors for mine ventilation based on decision tree[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(12):34.[doi:10.11731/j.issn.1673-193x.2021.02.005]
[6]张瑞程,王新颖,胡磊磊,等.基于一维卷积神经网络的燃气管道泄漏声发射信号识别*[J].中国安全生产科学技术,2021,17(2):104.[doi:10.11731/j.issn.1673-193x.2021.02.016]
ZHANG Ruicheng,WANG Xinying,HU Leilei,et al.Acoustic emission signal identification of gas pipeline leakage based on one-dimensional convolution neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(12):104.[doi:10.11731/j.issn.1673-193x.2021.02.016]
[7]倪景峰,李振,乐晓瑞,等.基于随机森林的阻变型通风网络故障诊断方法*[J].中国安全生产科学技术,2022,18(4):34.[doi:10.11731/j.issn.1673-193x.2022.04.005]
NI Jingfeng,LI Zhen,LE Xiaorui,et al.Resistance variant fault diagnosis method of ventilation network based on random forest[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(12):34.[doi:10.11731/j.issn.1673-193x.2022.04.005]
[8]付敏,郝镒林,李萌,等.安全工程技术领域数字孪生应用研究综述*[J].中国安全生产科学技术,2022,18(4):243.[doi:10.11731/j.issn.1673-193x.2022.04.035]
FU Min,HAO Yilin,LI Meng,et al.Summary of digital twin application research in field of safety engineering technology[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(12):243.[doi:10.11731/j.issn.1673-193x.2022.04.035]
[9]徐海军,李彦斌,王进,等.基于模糊Petri网的有载分接开关故障诊断方法研究*[J].中国安全生产科学技术,2022,18(5):222.[doi:10.11731/j.issn.1673-193x.2022.05.034]
XU Haijun,LI Yanbin,WANG Jin,et al.Research on fault diagnosis method of on-load tap changer based on Fuzzy Petri net[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(12):222.[doi:10.11731/j.issn.1673-193x.2022.05.034]
[10]普会杰,刘韬,刘畅,等.基于流形学习的旋转设备故障诊断方法*[J].中国安全生产科学技术,2023,19(8):209.[doi:10.11731/j.issn.1673-193x.2023.08.030]
PU Huijie,LIU Tao,LIU Chang,et al.Fault diagnosis method of rotating equipment based on manifold learning[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(12):209.[doi:10.11731/j.issn.1673-193x.2023.08.030]