|本期目录/Table of Contents|

[1]高康宁,蒋仲安,陈记合,等.冲压车间打磨区粉尘分布规律数值模拟与实测[J].中国安全生产科学技术,2018,14(4):181-186.[doi:10.11731/j.issn.1673-193x.2018.04.028]
 GAO Kangning,JIANG Zhongan,CHEN Jihe,et al.Numerical simulation and measurement of dust distribution in grinding area of stamping shop[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(4):181-186.[doi:10.11731/j.issn.1673-193x.2018.04.028]
点击复制

冲压车间打磨区粉尘分布规律数值模拟与实测
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年4期
页码:
181-186
栏目:
职业安全卫生管理与技术
出版日期:
2018-04-30

文章信息/Info

Title:
Numerical simulation and measurement of dust distribution in grinding area of stamping shop
文章编号:
1673-193X(2018)-04-0181-06
作者:
高康宁蒋仲安陈记合兰桂林浩宇
(北京科技大学 土木与资源工程学院,北京 100083)
Author(s):
GAO Kangning JIANG Zhongan CHEN Jihe LAN Gui LIN Haoyu
(School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China)
关键词:
打磨作业粉尘浓度数值模拟离散型模型
Keywords:
grinding operation dust concentration numerical simulation discrete phase model
分类号:
X964
DOI:
10.11731/j.issn.1673-193x.2018.04.028
文献标志码:
A
摘要:
为了预防打磨作业粉尘浓度超标而引起的职业危害和粉尘爆炸事故,依据气固两相流理论,建立打磨粉尘在抛射、扩散及沉降过程中的运动模型;以某公司冲压车间打磨区为例,运用Fluent软件进行粉尘浓度分布数值模拟,并与现场实测数据对比分析。研究结果表明:模拟结果与实测数据基本吻合;打磨区内风流紊乱,存在涡流区和无风区,不利于净化除尘;打磨台上方呼吸带高度粉尘浓度较高,最高达到9.12 mg/m3,应采取个体防尘措施;在2打磨台之间的走廊通道区域,粉尘浓度急剧下降,最低达到5.32 mg/m3;根据模拟结果中粉尘云出现的频繁程度和持续时间,将打磨作业区划分为20区,备料区划分为21区。
Abstract:
In order to prevent the occupational hazards and dust explosion accidents caused by the exceeding of dust concentration in the grinding operation, according to the theory of gas-solid two-phase flow, the movement model of grinding dust in the processes of projection, diffusion and settlement was established. Taking the grinding area of stamping shop in a certain company as example, the numerical simulation of dust concentration distribution was carried out by using Fluent software and compared with the field measured data. It showed that the simulation results were basically consistent with the measured data. The wind flow in the grinding area was turbulent, and there existed the eddy zone and no wind zone, which was unfavorable to the decontamination and dust removal. The dust concentration at the height of respiratory zone above the grinding table was higher, reaching the highest value of 9.12 mg/m3, and the individual dust prevention measures should be adopted. In the corridor passage area between two grinding tables, the dust concentration decreased sharply, reaching the lowest value of 5.32 mg/m3. According to the frequency and duration time of the occurrence of dust cloud in the simulation results, the grinding operation area was determined to be 20 zone, and the preparation area was determined to be 21 zone.

参考文献/References:

[1]张二强,张礼敬,陶刚,等.粉尘爆炸特征和预防措施探讨[J].中国安全生产科学技术,2012,8(2):88-92. ZHANG Erqiang, ZHANG Lijing, TAO Gang, et al. Preliminary study on characteristics and preventive measures of the dust explosion [J]. Journal of Safety Science and Technology, 2012, 8(2): 88-92.
[2]多英全,刘垚楠,胡馨升.2009~2013年我国粉尘爆炸事故统计分析研究[J].中国安全生产科学技术,2015,11(2):186-190. DUO Yingquan,LIU Yaonan, HU Xinsheng.Statistical analysis on dust explosion accidents occurring in China during 2009-2013 [J]. Journal of Safety Science and Technology, 2015, 11(2):186-190.
[3]秦跃平,张苗苗,崔丽洁,等.综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J].北京科技大学学报,2011,33(7):790-794. QIN Yueping, ZHANG Miaomiao, CUI Lijie, et al.Numerical simulation of dust migration and study on dust re-moval modes with the forced ventilation shunt in a fully mechanized workface [J]. Journal of University of Science and Technology Beijing, 2011, 33(7): 790-794.
[4]聂百胜,李祥春,杨涛,等.工作面采煤期间PM2.5粉尘的分布规律[J].煤炭学报,2013,38(1):33-37. NIE Baisheng,LI Xiangchun,YANG Tao, et al.Distribution of PM2.5 dust during mining operation in coal workface [J]. Journal of China Coal Society, 2013, 38(1): 33-37.
[5]杨胜来.综采工作面粉尘运移和粉尘浓度三维分布的数值模拟研究[J].中国安全科学学报,2001,11(4):64-67. YANG Shenglai. Numerical simulation of 3-dimensional dust distribution on long wall coal faces [J]. Journal of Safety Science and Technology, 2001, 11(4): 64-67.
[6]蒋仲安,陈举师,王晶晶,等.胶带输送巷道粉尘运动规律的数值模拟[J].煤炭学报,2012,37(4):659-663. JIANG Zhongan,CHEN Jushi,WANG Jingjing, et al.Numerical simulation of dust movement regularities in belt conveyer roadway [J]. Journal of China Coal Society, 2012, 37(4): 659-663.
[7]陈举师,姜兰,蒋仲安.边坡钻孔作业中粉尘分布及其影响因素的数值模拟[J].工程科学学报,2015,37(6):685-692. CHEN Jushi, JIANG Lan, JIANG Zhongan.Numerical simulation of dust distribution and influencing factors in slope drilling[J]. Chinese Journal of Engineering, 2015, 37(6):685-692.
[8]时训先,邓权龙,蒋仲安,等.石棉破碎车间粉尘质量浓度分布的数值模拟及实测[J].中国安全生产科学技术,2017,13(6):179-184. SHI Xunxian, DENG Quanlong, JIANG Zhongan, et al. Numerical simulation and measurement on mass concen-tration distribution of dust in asbestos crushing plant [J]. Journal of Safety Science and Technology, 2017, 13(6): 179-184.
[9]SHI G, LI M, GUO Z, et al. Unsteady simulation for optimal arrangement of dedusting airduct in coal mine heading face[J]. Journal of Loss Prevention in the Process Industries, 2017(46):45-53.
[10]ZHOU G, ZHANG Q, BAI R, et al. The diffusion behavior law of respirable dust at fully mechanized caving face in coal mine: CFD numerical simulation and engineering application[J]. Process Safety & Environmental Protection, 2017(106):117-128.
[11]HU Sheng-yong, FENG Guo-rui, REN Xiang-yan, et al. Numerical study of gas-solid two-phase flow in a coal roadway after blasting[J]. Advanced Powder Technology, 2016, 27(4): 1607-1617.
[12]LU Y,AKHTAR S,SASMITO A, et al. Numerical study of simultaneous methane and coal dust dispersion in a room and pillar mining face[C]//3rd International Symposium on Mine Safety Science and Engineering. 2016: 605-610.
[13]中华人民共和国住房和城乡建设部. 爆炸危险环境电力装置设计规范:GB 50058-2014[S]. 北京:中国计划出版社, 2014.
[14]陈举师,蒋仲安,张义坤.破碎硐室粉尘质量浓度分布规律的实验研究[J].东北大学学报(自然科学版),2015,36(7):1051-1055. CHEN Jushi,JIANG Zhongan,ZHANG Yikun.Experimental study on dust concentration distribution in crushing chamber [J]. Journal of Northeastern University, 2015, 36(7): 1051-1055.
[15]孙大伟. 木工镂铣作业粉尘分布规律研究[D]. 哈尔滨:哈尔滨理工大学, 2017.
[16]卫生部职业卫生标准专业委员会. 工作场所空气中粉尘测定 第1部分:总粉尘浓度:GBZ/T 192.1-2007[S].北京:人民卫生出版社,2007.

相似文献/References:

[1]王晓珍.煤巷掘进过程中粉尘浓度影响因素分析[J].中国安全生产科学技术,2011,7(4):75.
 WANG Xiao-zhen.Anlysis of dust concentration influence factor in coal roadway driving[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(4):75.
[2]赵恩彪.采煤工作面粉尘浓度分布及传感器的部署[J].中国安全生产科学技术,2012,8(11):85.
 ZHAO En biao.Study on concentration of dust distribution and deployment of sensor in coal mining face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(4):85.
[3]赵一姝,范健强,白建平,等.粉尘浓度对20 L球罐内硫磺粉尘分散过程流场特性的影响[J].中国安全生产科学技术,2018,14(7):48.[doi:10.11731/j.issn.1673-193x.2018.07.007]
 ZHAO Yishu,FAN Jianqiang,BAI Jianping,et al.Influence of dust concentration on flow field characteristics of sulfur dust during dispersion process in 20L spherical tank[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(4):48.[doi:10.11731/j.issn.1673-193x.2018.07.007]
[4]林浩宇,蒋仲安,杨斌,等.组合式通风打磨台风量对粉尘控制效果的影响[J].中国安全生产科学技术,2018,14(11):160.[doi:10.11731/j.issn.1673-193x.2018.11.026]
 LIN Haoyu,JIANG Zhongan,YANG Bin,et al.Influence of air volume on dust control effect for combined ventilation grinding table[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(4):160.[doi:10.11731/j.issn.1673-193x.2018.11.026]
[5]李刚,王运敏,金龙哲.金属矿山掘进巷道新型通风除尘系统研究与应用[J].中国安全生产科学技术,2019,15(8):77.[doi:10.11731/j.issn.1673-193x.2019.08.012]
 LI Gang,WANG Yunmin,JIN Longzhe.Research and application of new ventilation and dust removal system in tunneling roadway of metal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(4):77.[doi:10.11731/j.issn.1673-193x.2019.08.012]
[6]曾思敏,林龙沅,康菲菲,等.直通导叶式微型旋流管组分离效率实验[J].中国安全生产科学技术,2019,15(10):101.[doi:10.11731/j.issn.1673-193x.2019.10.016]
 ZENG Simin,LIN Longyuan,KANG Feifei,et al.Experiments on separation efficiency of micro swirling tube group with straightthrough leafguided type[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(4):101.[doi:10.11731/j.issn.1673-193x.2019.10.016]

备注/Memo

备注/Memo:
国家重点研发计划项目(2016YFC0801700)
更新日期/Last Update: 2018-05-08