|本期目录/Table of Contents|

[1]林浩宇,蒋仲安,杨斌,等.组合式通风打磨台风量对粉尘控制效果的影响[J].中国安全生产科学技术,2018,14(11):160-165.[doi:10.11731/j.issn.1673-193x.2018.11.026]
 LIN Haoyu,JIANG Zhongan,YANG Bin,et al.Influence of air volume on dust control effect for combined ventilation grinding table[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(11):160-165.[doi:10.11731/j.issn.1673-193x.2018.11.026]
点击复制

组合式通风打磨台风量对粉尘控制效果的影响
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年11期
页码:
160-165
栏目:
职业安全卫生管理与技术
出版日期:
2018-11-30

文章信息/Info

Title:
Influence of air volume on dust control effect for combined ventilation grinding table
文章编号:
1673-193X(2018)-11-0160-06
作者:
林浩宇1蒋仲安1杨斌2陈建武2
(1. 北京科技大学 土木与资源工程学院,北京100083;2. 中国安全生产科学研究院,北京100029)
Author(s):
LIN Haoyu1 JIANG Zhongan1 YANG Bin2 CHEN Jianwu2
(1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;2. China Academy of Safety Science and Technology, Beijing 100029, China)
关键词:
固定打磨粉尘浓度数值模拟配风比总排风量
Keywords:
fixed grinding dust concentration numerical simulation air distribution ratio total exhaust air volume
分类号:
X964
DOI:
10.11731/j.issn.1673-193x.2018.11.026
文献标志码:
A
摘要:
打磨作业过程中,利用组合式通风打磨台进行通风除尘已得到广泛应用,但大多根据经验设置通风参数。以数值模拟为研究手段,采用CFD-DPM风流-粉尘耦合数值模拟方法,研究粉尘最大浓度和呼吸带粉尘浓度与风量分配和总排风量的关系,对组合式通风打磨台进行通风除尘系统参数优化,为金属打磨粉尘治理提供依据。研究结果表明:当组合式通风打磨台总排风量为1 850 m3·h-1、台面与壁面的配风比K=1.67时,粉尘质量浓度较低,防尘效果最好。
Abstract:
In the process of grinding operation, the dust removal by ventilation with the combined ventilation grinding table has been widely used, but the ventilation parameters have almost been set according to the experience. Taking the numerical simulation as the research means, the relationship of the maximum dust concentration and dust concentration at breathing zone with the air volume distribution and total exhaust air volume were studied by using the CFD-DPM airflowdust coupling numerical simulation method, and the parameters optimization of ventilation dust removal system was carried out on the combined ventilation grinding table, so as to provide the foundation for the control of metal grinding dust. The results showed that when the total exhaust air volume of the combined ventilation grinding table was 1,850 m3/h, and the air distribution ratio of table surface and wall surface was 1.67, the mass concentration of dust was relatively low, with the best effect of dust prevention.

参考文献/References:

[1]周宏, 高顺平. 长钢轨焊接接头打磨除尘装置研究[J]. 铁道技术监督, 2011, 39(7):44-46. ZHOU Hong, GAO Shunping. Research on grinding and dedusting device for long rail welded joint[J]. Railway Quality Control, 2011, 39(7): 44-46.
[2]周先弟, 朱琨, 汪国荣,等. 铸造人工清理打磨区除尘方案的设计[C]// 现代铸造装备与技术交流大会. 2013.
[3]赵妮. 汽车涂装打磨影响因素分析[J]. 科技创新与应用, 2014(25):99. ZHAO Ni. Analysis on influencing factors of automobile painting and polishing[J].Technology Innovation and Application, 2014(25): 99.
[4]庞国强. 手持无尘角磨机的设计与应用[J]. 制造技术与机床, 2015(11):69-71. PANG Guoqiang.Design and application of hand-held clean angle grinder[J].Manufacturing Technology & Machine Tool, 2015 (11): 69-71.
[5]杨海荣. 全气动摩擦力可调粗糙打磨台设计[J]. 液压与气动, 2010(8):17-18. YANG Hairong.Design of roughness-burnish machine with adjustable friction and pneumatic control[J]. Chinese Hydraulics & Pneumatics, 2010 (8): 17-18.
[6]张政, 谢灼利. 流体—固体两相流的数值模拟[J]. 化工学报, 2001, 52(1):1-12. ZHANG Zheng, XIE Zhuoli.Numerical simulation of fluid-solid two-phase flow[J]. CIESC Journal, 2001, 52(1): 1-12.
[7]王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社, 2004.
[8]葛蔚, 李静海. 颗粒流体系统的宏观拟颗粒模拟[J]. 科学通报, 2001, 46(10):802-805. GE Wei, LI Jinghai. Macroscopic quasi-particle simulation of granular fluid system[J].Chinese Science Bulletin, 2001,46(10): 802-805.
[9]王晓珍, 蒋仲安, 王善文,等. 煤巷掘进过程中粉尘浓度分布规律的数值模拟[J]. 煤炭学报, 2007, 32(4):386-390. WANG Xiaozhen,JIANG Zhongan, WANG Shanwen, et al.Numerical simulation of distribution regularities of dust concentration during the ventilation process of coal roadway driving[J]. Journal of China Coal Society, 2007, 32(4): 386-390.
[10]蒋仲安, 陈举师, 王晶晶,等. 胶带输送巷道粉尘运动规律的数值模拟[J]. 煤炭学报, 2012, 37(4):659-663. JIANG Zhongan,CHEN Jushi,WANG Jingjing,et al. Numerical simulation of dust movement regularities in belt conveyer roadway[J]. Journal of China Coal Society, 2012, 37(4): 659-663.
[11]蒋仲安, 陈举师, 牛伟,等. 皮带运输巷道粉尘质量浓度分布规律的数值模拟[J]. 北京科技大学学报, 2012, 34(9):977-981. JIANG Zhongan,CHEN Jushi,NIU Wei, et al.Numerical simulation of dust concentration regularity in a belt conveyer roadway[J]. Journal of University of Science and Technology Beijing, 2012, 34(9): 977-981.
[12]陈举师, 蒋仲安, 杨斌,等. 破碎硐室粉尘浓度空间分布规律的数值模拟[J]. 煤炭学报, 2012, 37(11):1865-1870. CHEN Jushi,JIANG Zhongan,YANG Bin, et al.Numerical simulation of spatial dust concentration distribution regularities in crushing chamber[J]. Journal of China Coal Society, 2012, 37(11): 1865-1870.
[13]蒋仲安, 陈梅岭, 陈举师. 巷道型采场爆破粉尘质量浓度分布及变化规律的数值模拟[J]. 中南大学学报(自然科学版), 2013, 44(3):1190-1196. JIANG Zhongan, CHEN Meiling, CHEN Jushi. Numerical simulation of dust concentration and changing regulation in roadway stipe blasting[J]. Journal of Central South University(Science and Technology), 2013, 44(3): 1190-1196.
[14]蒋仲安, 姜兰, 陈举师. 露天矿潜孔打钻粉尘浓度分布规律数值模拟[J]. 深圳大学学报(理工版), 2013, 30(3):313-318. JIANG Zhongan, JIANG Lan, CHEN Jushi.Numerical simulation of the dust concentration distribution regularities of down-the-hole drilling in open-pit mine[J].Journal of Shenzhen University Science and Engineering, 2013, 30(3): 313-318.
[15]李艳强, 吴超, 易斌,等. 受限空间内粉尘流动的浓度分布模型及其数值模拟[J]. 中国安全科学学报, 2007, 17(10): 50-55,181. LI Yanqiang, WU Chao, YI Bin, et al. Concentration distribution model and numerical simulation of dust flow in confined space[J]. China Safety Science Journal, 2007,17 (10): 50-55,181.
[16]费振玲. 密集焊接作业电焊烟尘扩散特性与控制数值模拟[D]. 赣州:江西理工大学, 2015.
[17]孙大伟. 木工镂铣作业粉尘分布规律研究[D]. 哈尔滨:哈尔滨理工大学, 2017.

相似文献/References:

[1]王晓珍.煤巷掘进过程中粉尘浓度影响因素分析[J].中国安全生产科学技术,2011,7(4):75.
 WANG Xiao-zhen.Anlysis of dust concentration influence factor in coal roadway driving[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(11):75.
[2]赵恩彪.采煤工作面粉尘浓度分布及传感器的部署[J].中国安全生产科学技术,2012,8(11):85.
 ZHAO En biao.Study on concentration of dust distribution and deployment of sensor in coal mining face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(11):85.
[3]高康宁,蒋仲安,陈记合,等.冲压车间打磨区粉尘分布规律数值模拟与实测[J].中国安全生产科学技术,2018,14(4):181.[doi:10.11731/j.issn.1673-193x.2018.04.028]
 GAO Kangning,JIANG Zhongan,CHEN Jihe,et al.Numerical simulation and measurement of dust distribution in grinding area of stamping shop[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(11):181.[doi:10.11731/j.issn.1673-193x.2018.04.028]
[4]赵一姝,范健强,白建平,等.粉尘浓度对20 L球罐内硫磺粉尘分散过程流场特性的影响[J].中国安全生产科学技术,2018,14(7):48.[doi:10.11731/j.issn.1673-193x.2018.07.007]
 ZHAO Yishu,FAN Jianqiang,BAI Jianping,et al.Influence of dust concentration on flow field characteristics of sulfur dust during dispersion process in 20L spherical tank[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(11):48.[doi:10.11731/j.issn.1673-193x.2018.07.007]

备注/Memo

备注/Memo:
收稿日期: 2018-05-02
基金项目: 国家重点研发计划(2016YFC0801700);中国安全生产科学研究院基本科研业务费专项资金项目(2016JBKY01,2018JBKY01)
作者简介: 林浩宇,硕士研究生,主要研究方向为防尘防毒工程。
通信作者: 蒋仲安,博士,教授,主要研究方向为矿井通风安全及粉尘控制。
更新日期/Last Update: 2018-12-03