|本期目录/Table of Contents|

[1]张智,王博,刘和兴,等.南海某深水高温高压气井SS-15型井口头系统薄弱点安全评价*[J].中国安全生产科学技术,2023,19(4):107-113.[doi:10.11731/j.issn.1673-193x.2023.04.015]
 ZHANG Zhi,WANG Bo,LIU Hexing,et al.Safety evaluation on weak points of SS-15 wellhead system in a deep water high temperature and high pressure gas well in South China Sea[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(4):107-113.[doi:10.11731/j.issn.1673-193x.2023.04.015]
点击复制

南海某深水高温高压气井SS-15型井口头系统薄弱点安全评价*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
19
期数:
2023年4期
页码:
107-113
栏目:
职业安全卫生管理与技术
出版日期:
2023-04-30

文章信息/Info

Title:
Safety evaluation on weak points of SS-15 wellhead system in a deep water high temperature and high pressure gas well in South China Sea
文章编号:
1673-193X(2023)-04-0107-07
作者:
张智王博刘和兴马传新李磊
(1.西南石油大学 油气藏地质及开发工程国家重点实验室,四川 成都 610500;
2.中海石油(中国)有限公司湛江分公司,广东 湛江 524057)
Author(s):
ZHANG Zhi WANG Bo LIU Hexing MA Chuanxin LI Lei
(1.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu Sichuan 610500,China;
2.China National Offshore Oil (China) Co.,Ltd.Zhanjiang Branch,Zhanjiang Guangdong 524057,China)
关键词:
深水高温高压数值模拟薄弱点井口抬升井口系统完整性
Keywords:
deep water high temperature and high pressure numerical simulation weak point wellhead uplift wellhead system integrity
分类号:
TE952;X932
DOI:
10.11731/j.issn.1673-193x.2023.04.015
文献标志码:
A
摘要:
为应对深水高温高压气井生产过程中井口系统复杂性、井口抬升等对整个井口系统完整性的破坏情况,研究环空压力、上顶力、温度、产量对井口头系统薄弱点的影响。基于数值模拟方法建立井口系统有限元力学模型,分析在不同环空压力与上顶力条件下,井口系统各部件的应力大小变化情况,为井口系统薄弱点位置的确定提供理论依据,进而提出深水高温高压井井口系统完整性的管控图版及方法。研究结果表明:环空密封本体与套管挂、锁环与限位槽的接触部位是薄弱点;同一环空压力下,上顶力越大,套管挂等效应力与锁环变形量越大;当上顶力超过700 t时,不论环空压力是否存在,均达到井口系统薄弱点屈服强度。因此,深水高温高压油气井应制定合理生产制度或管理措施,研究结果对保障井口系统完整性,降低深水高温高压井生产阶段风险具有一定参考意义。
Abstract:
In order to deal with the complexity of wellhead system and the damage of wellhead uplift to the integrity of whole wellhead system during the production of high temperature and high pressure gas wells in deep water,the influence of annular pressure,upper jacking force,temperature and yield on the weak point of wellhead system was studied.A finite element mechanical model of the wellhead system was established on the basis of numerical simulation method,and the changes in stress levels of various components of the wellhead system under different annular pressure and upward force conditions were analyzed,which provided theoretical basis for determining the weak points of the wellhead system,thus the management chart and method for the integrity of wellhead system in the deep water high temperature and high pressure gas wells were put forward.The results showed that the contact parts between the annular sealing body and casing hanger,and the contact parts between the lock ring and limit groove were the weak points.Under the same annular pressure,the larger the upper jacking force,the greater the equivalent stress of casing hanger and the deformation of lock ring.When the upper jacking force exceeded 700 t,the yield strength of the weak point of wellhead system was reached regardless of whether the annular pressure existed.Therefore,it is of great significance to establish reasonable production system or management measures for ensuring the integrity of wellhead system and reducing the risk in the production stage of deep water high temperature and high pressure wells.

参考文献/References:

[1]刘承通.水下井口头系统研究及其密封总成结构设计分析[D].青岛:中国石油大学(华东),2009.
[2]KALDAL G S,JONSSON M T,PALSSON H,et al.Structural modeling of the casings in high temperature geothermal wells[J].Geothermics,2015,55:126-137.
[3]张智,王汉.考虑环空热膨胀压力分析高温高压气井井口抬升[J].工程热物理学报,2017,38(2):267-276. ZHANG Zhi,WANG Han.Analysis of wellhead growth considering the annulus thermal expansion pressure in HPHT gas wells[J].Journal of Engineering Thermophysics,2017,38(2):267-276.
[4]LI J,CHANG Y,SHI J,et al.Probability prediction approach of fatigue failure for the subsea wellhead using bayesian regularization artificial neural network[J].Journal of Marine Science and Engineering,2022,10(11):1627.
[5]ZHANG Z,ZHOU Z Y,HE Y F,et al.Study of a model of wellhead growth in offshore oil and gas wells[J].Journal of Petroleum Science and Engineering,2017,158:144-151.
[6]WANG Y B,GAO D L,FANG J.Finite element analysis of deepwater conductor bearing capacity to analyze the subsea wellhead stability with consideration of contact interface models between pile and soil[J].Journal of Petroleum Science and Engineering,2015,126:48-54.
[7]张智,王汉.多封隔器密闭环空热膨胀力学计算方法及应用[J].天然气工业,2016,36(4):65-72. ZHANG Zhi,WANG Han.A calculation method for thermal expansion mechanics of sealed annulus between multiple packers and its application[J].Natural Gas Industry,2016,36(4):65-72.
[8]AHMED S,PATEL H,SALEHI S.Numerical modeling and experimental study of elastomer seal assembly in downhole wellbore equipment:effect of material and chemical swelling[J].Polymer Testing,2020,89:106608.
[9]陈国明,李家仪,畅元江,等.深水油气水下井口系统疲劳损伤影响因素[J].石油学报,2019,40(S2):141-151. CHEN Guoming,LI Jiayi,CHANG Yuanjiang,et al.Influencing factors for fatigue damage of underwater wellhead system of deepwater oil and gas[J].Acta Petrolei Sinica,2019,40(S2):141-151.
[10]畅元江,王健,姬景奇,等.基于局部等效方法的深水水下井口半解耦分析模型[J].中国石油大学学报(自然科学版),2019,43(3):129-137. CHANG Yuanjiang,WANG Jian,JI Jingqi,et al.Asemi decoupled analysis model of subsea wellhead based on local equivalent method[J].Journal of China University of Petroleum (Edition of Natural Science),2019,43(3):129-137.
[11]VALKA W A,FOWLER J R.The design and analysis of a TLP subsea wellhead[C]//Houston,Texas:Offshore Technology Conference,1985.
[12]WILLIAMS D,ASHTOB P.Determination of the effect of second order motions of moored MODU on wellhead fatigue[C]//San Francisco,California:American Society of Mechanical Engineers,2014.
[13]YAN W,CHEN Z J,DENG J G,et al.Numerical method for subsea wellhead stability analysis in deepwater drilling[J].Ocean Engineering,2015,98:50-56.
[14]侯超,肖文生,刘健,等.水下井口系统密封技术研究和发展现状[J].润滑与密封,2015,40(1):110-114. HOU Chao,XIAO Wensheng,LIU Jian,et al.Review on subsea well system sealing technology research[J].Lubrication Engineering,2015,40(1):110-114.
[15]张智,李炎军,张超,等.高温含CO2气井的井筒完整性设计[J].天然气工业,2013,33(9):79-86. ZHANG Zhi,LI Yanjun,ZHANG Chao,et al.Wellbore integrity design of high-temperature gas wells containing CO2[J].Natural Gas Industry,2013,33(9):79-86.
[16]卢亚锋,佘朝毅,马辉运,等.多管柱热应力模型预测采气井口装置的抬升[J].天然气工业,2015,35(2):76-80. LU Yafeng,SHE Chaoyi,MA Huiyun,et al.Uplift prediction of gas-producing wellhead equipments of gas production wells by use of a multi-string thermal stress model[J].Natural Gas Industry,2015,35(2):76-80.
[17]肖文生,秦浩智,侯超,等.井口头系统密封总成关键部件设计与分析[J].石油机械,2013,41(11):79-83. XIAO Wensheng,QIN Haozhi,HOU Chao,et al.Design and analysis of the key parts of wellhead system sealing assembly[J].China Petroleum Machinery,2013,41(11):79-83.

相似文献/References:

[1]薛鲁宁,樊建春,张来斌.基于马尔可夫方法的水下防喷器可靠性研究[J].中国安全生产科学技术,2012,8(10):72.
 XUE Lu ning,FAN Jian chun,ZHANG Lai bin.Research on reliability of subsea blowout preventer based on Markov method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(4):72.
[2]孟会行,陈国明,朱 渊,等.基于PERT图的LMRP集油罩深水井喷应急作业设计[J].中国安全生产科学技术,2014,10(2):114.[doi:10.11731/j.issn.1673-193x.2014.02.019]
 MENG Hui xing,CHEN Guo ming,ZHU Yuan,et al.PERTbased design of LMRP cap emergency operation for deepwater blowout[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(4):114.[doi:10.11731/j.issn.1673-193x.2014.02.019]
[3]雷军,樊建春,刘书杰,等.基于数理统计的深水防喷器系统安全关键性失效分析[J].中国安全生产科学技术,2014,10(12):106.[doi:10.11731/j.issn.1673-193x.2014.12.018]
 LEI Jun,FAN Jian-chun,LIU Shu-jie,et al.Analysis on safety critical failure of deepwater BOP system based on mathematical statistics[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(4):106.[doi:10.11731/j.issn.1673-193x.2014.12.018]
[4]李新宏,李秀美,陈国明,等.2 000 m超深水水下分离器泄漏油气扩散特性研究[J].中国安全生产科学技术,2016,12(1):38.[doi:10.11731/j.issn.1673-193x.2016.01.007]
 LI Xinhong,LI Xiumei,CHEN Guoming,et al.Study on dispersion characteristics of leaking oil and gas from subsea separator in 2 000 m ultra deepwater[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(4):38.[doi:10.11731/j.issn.1673-193x.2016.01.007]
[5]徐文静,刘少杰,陈国明,等.深水内波条件下井喷原油扩散规律数值仿真分析[J].中国安全生产科学技术,2016,12(11):11.[doi:10.11731/j.issn.1673-193x.2016.11.002]
 XU Wenjing,LIU Shaojie,CHEN Guoming,et al.Numerical simulation on diffusion law of crude oil resulting from blowout under internal wave in deep water[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(4):11.[doi:10.11731/j.issn.1673-193x.2016.11.002]
[6]曹文科,邓金根,谭强,等.深水钻井热交换作用下的井壁稳定性分析[J].中国安全生产科学技术,2017,13(6):53.[doi:10.11731/j.issn.1673-193x.2017.06.008]
 CAO Wenke,DENG Jingen,TAN Qiang,et al.Analysis on stability of borehole under the effect of heat exchange in deepwater drilling[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):53.[doi:10.11731/j.issn.1673-193x.2017.06.008]
[7]王玲玲,王兆丰,霍肖肖,等.高温高压下煤孔隙结构的变化对瓦斯吸附特性的影响[J].中国安全生产科学技术,2018,14(12):97.[doi:10.11731/j.issn.1673-193x.2018.12.015]
 WANG Lingling,WANG Zhaofeng,HUO Xiaoxiao,et al.Influence of pore structure change on gas adsorption characteristics of coal under high temperature and high pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(4):97.[doi:10.11731/j.issn.1673-193x.2018.12.015]
[8]王汉,张智,李玉飞,等.基于环空带压临界值确定高温高压气井临界产量[J].中国安全生产科学技术,2019,15(10):12.[doi:10.11731/j.issn.1673-193x.2019.10.002]
 WANG Han,ZHANG Zhi,LI Yufei,et al.Determining critical production of HTHP gas well based on critical value of annulus pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(4):12.[doi:10.11731/j.issn.1673-193x.2019.10.002]
[9]朱敬宇,陈国明,曹恩泽,等.基于DEMATEL/ISM的深水井喷风险影响因素研究*[J].中国安全生产科学技术,2020,16(8):5.[doi:10.11731/j.issn.1673-193x.2020.08.001]
 ZHU Jingyu,CHEN Guoming,CAO Enze,et al.Study on influencing factors of deepwater blowout risk based on DEMATEL/ISM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(4):5.[doi:10.11731/j.issn.1673-193x.2020.08.001]

备注/Memo

备注/Memo:
收稿日期: 2022-07-20
* 基金项目: 国家自然科学基金项目(52074234)
作者简介: 张智,博士,教授,主要研究方向为井筒完整性与环空带压管控、材料腐蚀与防护。
更新日期/Last Update: 2023-05-11