|本期目录/Table of Contents|

[1]王秋红,蒋夏夏,代爱萍.基于Gaussian的甲烷爆炸微观反应计算分析*[J].中国安全生产科学技术,2022,18(6):178-184.[doi:10.11731/j.issn.1673-193x.2022.06.027]
 WANG Qiuhong,JIANG Xiaxia,DAI Aiping.Calculation and analysis on micro reaction of methane explosion based on Gaussian[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(6):178-184.[doi:10.11731/j.issn.1673-193x.2022.06.027]
点击复制

基于Gaussian的甲烷爆炸微观反应计算分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年6期
页码:
178-184
栏目:
职业安全卫生管理与技术
出版日期:
2022-06-30

文章信息/Info

Title:
Calculation and analysis on micro reaction of methane explosion based on Gaussian
文章编号:
1673-193X(2022)-06-0178-07
作者:
王秋红蒋夏夏代爱萍
(1.西安科技大学 安全科学与工程学院,陕西 西安 710054;
2.西安科技大学 化学与化工学院,陕西 西安 710054)
Author(s):
WANG Qiuhong JIANG Xiaxia DAI Aiping
(1.College of Safety Science and Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China;
2.College of Chemistry and Chemical Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China)
关键词:
甲烷爆炸自由基过渡态热力学
Keywords:
methane explosion free radical transition state thermodynamics
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2022.06.027
文献标志码:
A
摘要:
为从微观热力学及动力学角度更深入了解甲烷爆炸微观反应机理,应用Gaussian软件DFT理论,B3LYP-D3(BJ)/6-31+G*水平对利用敏感性分析方法得出的甲烷爆炸反应简化机理中各驻点进行结构优化与频率计算,在M06-2X/def2-tzvpp水平上计算单电能,得到反应物、中间体、过渡态、产物的稳定构型及其参数、热力学数据,并计算得到各反应的焓变、吉布斯自由能变及自由能垒。研究结果表明:甲烷爆炸微观反应机理中基元反应1,9无过渡态,其他反应存在过渡态;基元反应1,4等为反应体系提供热量,保证甲烷氧化反应不断进行,反应1放热最多,焓变为-433.7 kJ·mol-1;关键自由基OH·的生成是反应3 O2+H·→OH·+O·与反应4 O·+H2→OH·+H·相互协同与促进的结果;反应3 O2+H·→OH·+O·为该甲烷爆炸机理的决速步,自由能垒为312.4 kJ·mol-1。研究结论可为深入研究甲烷爆炸微观反应机理和化学抑爆机理提供借鉴。
Abstract:
In order to further understand the micro reaction mechanism of methane explosion from the perspectives of micro thermodynamics and kinetics,the structure optimization and frequency calculation of each stagnation point in the simplified mechanism of methane explosion reaction proposed by the sensitivity analysis method was conducted by using the Gaussian software DFT theory and B3LYP-D3(BJ)/6-31+G* level.The single electrical energy at M06-2X/def2-tzvpp level was calculated,then the stable configurations and their parameters and the thermodynamic data of reactants,intermediates,transition states and products were obtained,and the enthalpy change,Gibbs free energy change,and free energy barrier of each reaction were calculated.The results showed that there was no transition state in elementary reaction 1 and 9 in the micro reaction mechanism of methane explosion,and there were transition states in other reactions.The elementary reaction 1 and 4 provided heat for the reaction system and ensured the continuous oxidation reaction of methane.The heat release of reaction 1 was the greatest,and the enthalpy change was -433.7 kJ·mol-1.The generation of key free radical OH was the result of the interaction and promotion of reaction 3 O2+H·→OH·+O· and reaction 4 O·+ H2→OH·+H·.The reaction 3 O2+H·→OH·+O· was the rate-determining step of the mechanism of methane explosion,and the free energy barrier was 312.4 kJ·mol-1.The research results provide reference for further study on the micro reaction mechanism and chemical explosion suppression mechanism of methane explosion.

参考文献/References:

[1]WANG Q,SUN Y,LI X,et al.Process of natural gas explosion in linked vessels with three structures obtained using numerical simulation[J].Processes,2020,8(1):52.
[2]王秋红,王二飞,陈晓坤,等.管道内瓦斯爆炸火焰传播压力与温度特性[J].中南大学学报,2020,51(1):239-247. WANG Qiuhong,WANG Erfei,CHEN Xiaokun,et al.Pressure and temperature characteristics of flame propagation of gas explosion in pipeline[J].Journal of Central South University,2020,51(1):239-247.
[3]LI H,CHEN X,SHU C,et al.Experimental and numerical investigation of the influence of laterally sprayed water mist on a methane-air jet flame[J].Chemical Engineering Journal,2019,356:554-569.
[4]WANG Q,SUN Y,SHU C M,et al.Effect of separation distance on gas dispersion and vapor cloud explosion in a storage tank farm determined using computational fluid dynamics[J].Journal of Loss Prevention in the Process Industries,2020,68:104282.
[5]WANG Q,SUN Y,JIANG J,et al.Inhibiting effects of gas-particle mixtures containing CO2,Mg(OH)2 particles,and NH4H2PO4 particles on methane explosion in a 20-L closed vessel[J].Journal of Loss Prevention in the Process Industries,2020,64:104082.
[6]COPPENS F H V,DERUYEK J,KONNOV A A.The effects of composition on burning velocity and nitric oxide formation inlaminar premixed flames of CH4+H2+O2+N2[J].Combustion & Flame,2007,149(4):409-417.
[7]HUGHES K J,TURANYI T,CLAGUE A R,et al.Development and testing of acomprehensive chemical chemical mechanism for the oxidation of methane[J].International Journal of Chemical Kinetics,2001,33(9):513-538.
[8]LI S C,WILLIAMS F A.NOx formation in two-stage rnethane-air flames[J].Combustion & Flame,1999,118(3):339-414.
[9]WARNATZ J.Hydrocarbon oxidantion high-temperature chemistry[J].Pure & Applied Chemistry,2000,72(11):2101-2110.
[10]WESTBROOK C K,MIZOBUCHI Y,POINSOT T J,et al.Computational combustion [J].Proceedings of the Combustion Institute,2005,30(1):125-157.
[11]王连聪,陈洋.封闭空间水及CO2对瓦斯爆炸反应动力学特性的影响分析[J].煤矿安全,2011,42(7):16-20. WANG Liancong,CHEN Yang.Analysis of the impact of water and CO2 on reaction kinetic for gas explosion in enclosure space [J].Safety in Coal Mines,2011,42(7):16-20.
[12]侯金丽,金平,蔡国飙.基于敏感性分析的氧/甲烷燃烧反应简化机理[J].航空动力学报,2012,27(7):1549-1554. HOU Jinli,JIN Ping,CAI Guobiao.Reduced mechanism for oxygen/methane combustion based on sensitivity analysis [J].Journal of Aerospace Power,2012,27(7):1549-1554.
[13]刘欣,蒋炎坤,张建平,等.甲烷HCCl燃烧反应机理简化与分析[J].武汉理工大学学报,2012,34(1):71-74. LIU Xin,JIANG Yankun,ZHANG Jianping,et al.Reduction and analysis of kinetic model for methane HCCl combustion [J].Journal of Wuhan University of Technology,2012,34(1):71-74.
[14]乔瑜,徐明厚,姚洪.基于敏感性分析的甲烷反应机理优化简化[J].华中科技大学学报,2007(5):85-87. QIAO Yu,XU Minghou,YAO Hong.Optimally-reduced kinetic models for GRI-Mech 3.0 combustion mechanism based on sensitivity analysis [J].Journal of Huazhong University of Science and Technology,2007(5):85-87.
[15]HE Z,LI X,LIU L,et al.The intrinsic mechanism of methane oxidation under explosion condition:A combined Reax FF and DFT study[J].Fuel,2014,124:85-90.
[16]LUO Z,SU B,LI Q,et al.Micromechanism of the initiation of a multiple flammable gas explosion[J].Energy & Fuels,2019,33(8):7738-7748.
[17]罗振敏,康凯,任军莹.NH3对甲烷链式爆炸的微观作用机理[J].煤炭学报,2016,41(4):876-883. LUO Zhenmin,KANG Kai,REN Junying.Microscopic mechanism of NH3 on chain of methane explosion[J].Journal of China Coal Society,2016,41(4):876-883.
[18]LUO Z,WANG T,REN J,et al.Effects of ammonia on the explosion and flame propagation characteristics of methane-air mixtures[J].Journal of Loss Prevention in the Process Industries,2017,47:120-128.
[19]罗振敏,邓军,郭晓波.基于Gaussian的瓦斯爆炸微观反应机理[J].辽宁工程技术大学学报,2008,27(3):325-328. LUO Zhenmin,DENG Jun,GUO Xiaobo.Microcosmic mechanism of gas explosion based on Gaussian[J].Journal of Liaoning Technical University,2008,27(3):325-328.
[20]罗振敏.链式反应理论在矿井瓦斯抑爆中的应用[J].煤矿安全,2009,40(2):67-69. LUO Zhenmin.Applications of chain reaction for gas explosion suppression[J].Safety in Coal Mines,2009,40(2):67-69.
[21]罗振敏,康凯.CO2抑制甲烷-空气链式爆炸微观机理的仿真分析[J].中国安全科学学报,2015,25(5):42-48. LUO Zhenmin,KANG Kai.Simulative analysis of microscopic mechanism of CO2 inhibiting methane-air chain explosion [J].China Safety Science Journal,2015,25(5):42-48.
[22]罗振敏,张江,王涛.CO/CH4链式爆炸反应机理研究[J].兵工学报,2017,38(S1):49-59. LUO Zhenmin,ZHANG Jiang,WANG Tao.Study of CO/CH4 explosion chain reaction mechanism[J].Acta Armamentarii,2017,38(S1):49-59.
[23]罗振敏,李逵,毛文龙,等.少量乙烯对甲烷爆炸危险性及反应历程的影响[J].西安科技大学学报,2018,38(1):17-25. LUO Zhenmin,LI Kui,MAO Wenlong,et al.Influence of minor ethylene on methane explosion hazard and reaction course[J].Journal of Xi’an University of Science and Technology,2018,38(1):17-25.
[24]姜海洋,张国宾.CO与H2O抑制瓦斯爆炸的微观反应机理[J].煤炭转化,2019,42(6):77-87. JIANG Haiyang,ZHANG Guobin.Microscopic mechanism of CO and H2O on chain of methane explosion[J].Coal Conversion,2019,42(6):77-87.
[25]MERRICK J P,MORAN D,RADOM L.An evaluation of harmonic vibrational frequency scale factors[J].Journal of Physical Chemistry A,2007,111(45):11683-11700.
[26]贾海林,翟汝鹏,李第辉,等.三种盐类超细水雾抑制管道内甲烷-空气预混气爆炸的差异性[J].爆炸与冲击,2020,40(8):42-53. JIA Hailin,ZHAI Rupeng,LI Dihui,et al.Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts[J].Explosion And Shock Waves,2020,40(8):42-53.

相似文献/References:

[1]赵建会,张辛亥,程方明.甲烷爆炸过程的近球型爆炸罐定量实验研究[J].中国安全生产科学技术,2014,10(12):23.[doi:10.11731/j.issn.1673-193x.2014.12.004]
 ZHAO Jian-hui,ZHANG Xin-hai,CHENG Fang-ming.Quantitatively experimental study on methane explosion by a near-global explosion testing tank[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):23.[doi:10.11731/j.issn.1673-193x.2014.12.004]
[2]江丙友,刘泽功,林柏泉.开口钢管内甲烷爆炸火焰厚度和压力发展特征[J].中国安全生产科学技术,2015,11(9):5.[doi:10.11731/j.issn.1673-193x.2015.09.001]
 JIANG Bing-you,LIU Ze-gong,LIN Bai-quan.Flame thickness and pressure development characteristics of methane explosion in an open steel pipe[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(6):5.[doi:10.11731/j.issn.1673-193x.2015.09.001]
[3]郭晶,王庆.多元可燃性混合气体爆炸中间产物发射光谱特性实验研究[J].中国安全生产科学技术,2017,13(6):167.[doi:10.11731/j.issn.1673-193x.2017.06.028]
 GUO Jing,WANG Qing.Experimental study on emission spectral characteristics of intermediate products in multi-component combustible gas mixture explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):167.[doi:10.11731/j.issn.1673-193x.2017.06.028]
[4]徐景德,田思雨,刘振乾,等.甲烷爆炸传播过程膜状障碍物的激励效应研究[J].中国安全生产科学技术,2019,15(7):69.[doi:10.11731/j.issn.1673-193x.2019.07.011]
 XU Jingde,TIAN Siyu,LIU Zhenqian,et al.Research on excitation effect of membrane obstacle in propagation process of methane explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(6):69.[doi:10.11731/j.issn.1673-193x.2019.07.011]
[5]高建村,王乐,胡守涛,等.不同磁性金属丝对丙烷爆炸反应抑制机理研究[J].中国安全生产科学技术,2020,16(7):125.[doi:10.11731/j.issn.1673-193x.2020.07.020]
 GAO Jiancun,WANG Le,HU Shoutao,et al.Study on inhibition mechanism of different magnetic metal wires on propane explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(6):125.[doi:10.11731/j.issn.1673-193x.2020.07.020]
[6]胡亮子,马国鹭,赵涌,等.丙烷扩散火焰燃烧光谱特性研究*[J].中国安全生产科学技术,2022,18(5):85.[doi:10.11731/j.issn.1673-193x.2022.05.013]
 HU Liangzi,MA Guolu,ZHAO Yong,et al.Study on combustion spectrum characteristics of propane diffusion flame[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(6):85.[doi:10.11731/j.issn.1673-193x.2022.05.013]

备注/Memo

备注/Memo:
收稿日期: 2021-05-28
* 基金项目: 陕西省自然科学基础研究计划项目(2021JQ-565);国家重点研发计划项目(2016YFC0800100);国家自然科学基金项目(51504190)
作者简介: 王秋红,博士,教授,主要研究方向为工业安全理论及防治技术。
更新日期/Last Update: 2022-07-10