|本期目录/Table of Contents|

[1]江丙友,刘泽功,林柏泉.开口钢管内甲烷爆炸火焰厚度和压力发展特征[J].中国安全生产科学技术,2015,11(9):5-10.[doi:10.11731/j.issn.1673-193x.2015.09.001]
 JIANG Bing-you,LIU Ze-gong,LIN Bai-quan.Flame thickness and pressure development characteristics of methane explosion in an open steel pipe[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):5-10.[doi:10.11731/j.issn.1673-193x.2015.09.001]
点击复制

开口钢管内甲烷爆炸火焰厚度和压力发展特征
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
11
期数:
2015年9期
页码:
5-10
栏目:
学术论著
出版日期:
2015-09-30

文章信息/Info

Title:
Flame thickness and pressure development characteristics of methane explosion in an open steel pipe
作者:
江丙友12刘泽功1林柏泉3
(1. 安徽理工大学 能源与安全学院,安徽 淮南 232001;2. 中国矿业大学<北京>煤炭资源与安全开采国家重点实验室, 北京 100083;3. 中国矿业大学 安全工程学院,江苏 徐州 221116)
Author(s):
JIANG Bing-you12 LIU Ze-gong1 LIN Bai-quan3
(1. School of Mining and Safety Engineering, Anhui University of Science & Technology, Huainan Anhui 232001, China; 2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology (Beijing), Beijing 100083, China; 3. S
关键词:
非绝热条件开口管道甲烷爆炸火焰厚度
Keywords:
non-adiabatic condition open pipe methane explosion flame thickness
分类号:
X937; TD712.7
DOI:
10.11731/j.issn.1673-193x.2015.09.001
文献标志码:
A
摘要:
通过搭建长为20m、截面为0.08m×0.08m的非绝热开口钢管,研究了甲烷与空气预混气体发生爆炸后的火焰和压力发展特征。实验结果表明:火焰信号最强的时刻对应于火焰前锋反应区内某时刻,而火焰信号起始上升时刻与火焰前锋预热区起始时刻接近,应选择某点火焰信号起始上升时刻作为该点的火焰到达时间。随着远离点火源距离的增加,火焰厚度呈现先变薄后变厚的变化趋势,最大超压呈现先减小、后增大、再减小的趋势,火焰传播速度则呈先增大后减小的变化过程。非绝热开口钢管的实验条件对爆炸超压和火焰传播速度的影响较大。研究成果可为甲烷爆炸致灾机制及防控的研究提供参考。
Abstract:
Through establishing a non-adiabatic open pipe with a length of 20 m and a cross-sectional area of 0.08 m × 0.08 m, the flame and pressure development characteristics of premixed methane/air explosion were investigated experimentally. The results showed that the time of obtaining maximum flame signal value is corresponding to a certain time of flame-front reaction zone, while the time when the flame signal begins to rise is almost the same as that when the flame-front preheat zone starts. Thus, the time when the flame signal begins to rise at a certain point can be defined as the flame arrival time at this point. With increasing distance away from the ignition source, the flame thickness presents a changing trend of decreasing first and increasing after, and the maximum overpressure follows a trend of decreasing, increasing and decreasing, while the flame propagation speed shows a changing process of increasing and decreasing. The experimental conditions of non-adiabatic open steel pipe have an obvious effect on the explosion overpressure and flame propagation speed. The results can provide a reference for the further research on the disaster mechanism and control of methane explosion.

参考文献/References:

[1]Lee J H S, Solohukhin R I, Oppenheim A K. Current views on gaseous detonation [J]. Astonautica Acta, 1969, 14: 565-584
[2]Bjerketvedt D, Bakke J R, van Wingerden K. Gas explosion handbook [J]. Journal of Hazardous Materials, 1997, 52(1): 1-150
[3]Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499-550
[4]Dorofeev S B. Flame acceleration and explosion safety applications [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2161-2175
[5]林柏泉, 张仁贵, 吕恒宏. 瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J]. 煤炭学报, 1999, 24(1): 56-59 LIN Bai-quan, ZHANG Ren-gui, LV Heng-hong. Research on accelerating mechanism and flame transmission in gas explosion [J]. Journal of China Coal Society, 1999, 24(1): 56-59
[6]林柏泉, 周世宁, 张仁贵. 障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J]. 中国矿业大学学报, 1999, 28(2): 104-107 LIN Bai-quan, ZHOU Shi-ning, ZHANG Ren-gui. Influence of barriers on flame transmission and explosion wave in gas explosion [J]. Journal of China University of Mining & Technology, 1999, 28(2): 104-107
[7]Frolov S M, Aksenov V S, Shamshin I O. Reactive shock and detonation propagation in U-bend tubes [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4-6): 501-508
[8]Frolov S M, Aksenov V S, Shamshin I O. Shock wave and detonation propagation through U-bend tubes [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2421-2428
[9]Frolov S M. Fast deflagration-to-detonation transition [J]. Russian Journal of Physical Chemistry, 2008, B2: 442-455
[10]萨文科. 井下空气冲击波[M]. 北京: 冶金工业出版社, 1979
[11]林柏泉, 陈伯辉. 瓦斯爆炸过程中火焰厚度的实验室测定及其分析[J]. 中国矿业大学学报, 2000, 29(1): 45-47 LIN Bai-quan, CHEN Bo-hui. Analysis and lab measurement of flame thickness in gas explosion [J]. Journal of China University of Mining & Technology, 2000, 29(1): 45-47
[12]林柏泉, 桂晓宏. 瓦斯爆炸过程中火焰厚度测定及其温度场数值模拟分析[J]. 实验力学, 2002, 17(2): 227-233 LIN Bai-quan, GUI Xiao-hong. Computer simulation on the temperature field of gas explosion and lab measurement for the flame thickness [J]. Journal of Experimental Mechanics, 2002, 17(2): 227-233
[13]王从银, 何学秋. 瓦斯爆炸火焰厚度及其持续时间的实验研究[J]. 煤炭科学技术, 2001, 29(8): 27-30 WANG Cong-yin, HE Xue-qiu. Experimental research on flame thickness and sustaining time of gas explosion [J]. Coal Science and Technology, 2001, 29(8): 27-30

相似文献/References:

[1]李蒙,杜扬,李国庆,等.油气浓度对半开口管道爆炸超压特性与火焰行为的影响[J].中国安全生产科学技术,2017,13(10):174.[doi:10.11731/j.issn.1673-193x.2017.10.029]
 LI Meng,DU Yang,LI Guoqing,et al.Effects of gasoline-air concentration on explosion overpressure characteristics and flame behavior of semi-open pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):174.[doi:10.11731/j.issn.1673-193x.2017.10.029]

备注/Memo

备注/Memo:
国家自然科学基金项目(51504008);安徽高校自然科学研究项目(KJ2015A068);中国博士后科学基金资助项目(2015M571913);煤炭资源与安全开采国家重点实验室开放课题资助项目(SKLCRSM14KFB07);安徽理工大学引进人才科研启动基金资助项目(ZY530)
更新日期/Last Update: 2015-09-30