|本期目录/Table of Contents|

[1]师吉浩,朱渊,陈国明,等.非典型约束形式下海洋平台波纹板舱室抗爆能力评估[J].中国安全生产科学技术,2016,12(4):39-44.[doi:10.11731/j.issn.1673-193x.2016.04.008]
 SHI Jihao,ZHU Yuan,CHEN Guoming,et al.Assessment on explosion resistance capability for corrugated wall of cabin with atypical constraints on offshore platform[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(4):39-44.[doi:10.11731/j.issn.1673-193x.2016.04.008]
点击复制

非典型约束形式下海洋平台波纹板舱室抗爆能力评估
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年4期
页码:
39-44
栏目:
学术论著
出版日期:
2016-04-30

文章信息/Info

Title:
Assessment on explosion resistance capability for corrugated wall of cabin with atypical constraints on offshore platform
作者:
师吉浩朱渊陈国明刘玉琳
中国石油大学<华东> 海洋油气装备与安全技术研究中心, 山东 青岛 266580)
Author(s):
SHI Jihao ZHU Yuan CHEN Guoming LIU Yulin
(Center for Offshore Engineering and Safety Technology, China University of Petroleum, Qingdao Shandong 266580, China)
关键词:
P-I曲线海洋平台油气爆炸抗爆能力非典型约束
Keywords:
P-I curve offshore platform oil and gas explosion explosion resistance capability atypical constraints
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2016.04.008
文献标志码:
A
摘要:
针对非典型约束条件即底部端面梁固定约束、其他各端面梁连接约束的海洋平台关键舱室,其波纹板舱壁在油气爆炸载荷下抗爆能力研究不足,采用数值模拟方法,结合考虑材料应变率效应的实验验证,分析爆炸载荷下舱壁动力响应及破坏模式。由传统位移指标不能准确评估该模型的抗爆能力,提出基于应变的评价指标,以此建立P-I评估曲线。研究表明舱壁与底部端面梁连接部位首先达到最大破裂应变发生破裂,其为超压与冲量共同作用结果;舱室可抵抗超压40 kPa、冲量230 kPa·ms的载荷而不发生塑性变形;舱室可抵抗超压85 kPa、冲量400 kPa·ms的载荷而不发生破裂。提出的以应变为指标的P-I曲线可量化舱壁损伤评估区间,结合爆炸载荷值,准确评估舱壁抗爆能力及损伤大小,为工程人员优化舱壁抗爆能力、确定灾后控制措施提供指导。
Abstract:
Aiming at the key cabins on offshore platform with atypical constraints, namely fixed constraints of end beams at the bottom and link constraints of other end beams, the study on explosion resistance capability for corrugated wall of cabin under the load of oil and gas explosion was insufficient. The dynamic response and failure mode of cabin wall under explosion load were analyzed by using numerical simulation method combined with experimental verification on strain rate effect of material. Because the explosion resistance capability of this model could not be assessed accurately by traditional displacement indexes, an evaluation index based on strain was proposed, thus the P-I assessment curve was established. The results showed that the maximum rupture strain was reached at first in the connection parts between the cabin walls and the end beams at the bottom of cabin, then the rupture occurred, which was caused by the combined action of overpressure and impulse. The cabin could resist the explosion load of 40 kPa overpressure or 230 kPa·ms impulse without plastic deformation, and it could resist the explosion load of 85 kPa overpressure or 400 kPa·ms impulse without rupture. The proposed P-I curve with strain as index can quantify the assessment range of wall damage, and assess the explosion resistance capability and damage of cabin wall accurately combined with the value of explosion load. It provides the guidance for engineers to optimize the explosion resistance capability of cabin wall and determine the post-accident control countermeasures.

参考文献/References:

[1]Paik J K, Czujko J. Explosion and fire engineering of FPSOs (phase II): Definition of fire and gas explosion design loads[J]. Research Institute of Ship and Offshore Structural Design Innovation, Pusan National University, Busan, Korea, Final Report No. EFEF-03-R2, 2010.
[2]Biggs J M, Testa B. Introduction to structural dynamics[J]. 1964.
[3]DNV-RP-C204. Design against accidental loads[S]. Norway: DET NORSKE VERITAS, 2010.
[4]Tolloczko J J A. Interim guidance notes for the design and protection of topside structures against explosion and fire[M]. Steel Construction Institute, 1992.
[5]Brewerton R. Design Guide for Stainless Steel Blast Wall–Technical Note 5[J]. Fire and Blast Information Group (FABIG), London, 1999.
[6]L.A.Louca, J.W.Boh, Y.S.Choo. Design and analysis of stainless steel profiled blast barriers[J]. Journal of Constructional Steel Research, 2004, 60: 1699-1723.
[7]于文静, 赵金城, 史键勇,等.波纹板防爆墙在爆炸荷载作用下动态力学性能研究[J].四川建筑科学研究, 2012,38(2): 78-81. YU Wenjing, ZHAO Jincheng, SHI Jianyong,et al. Study on dynamic mechanical performance of corrugated sheet blast wall under blast loading[J]. Sichuan Building Science, 2012,38(2): 78-81.
[8]Langdon GS, Schleyer GK. Inelastic deformation and failure of profiled stainless steel blast walls[J]. PartⅠ: experimental investigations, International Journal of Impact Engineering, 2005, 31: 341-369.
[9]Langdon GS, Schleyer GK. Inelastic deformation and failure of profiled stainless steel blast walls[J]. PartⅡ: analytical modeling considerations. International Journal of Impact Engineering, 2005, 31: 371-399.
[10]Langdon GS, Schleyer GK. Inelastic deformation and failure of profiled stainless steel blast walls[J]. PartⅢ: finite element simulations and overall summary. International Journal of Impact Engineering, 2006 ,32: 988-1012.
[11]Soh T B. Load-impulse Diagrams of Reinforced Concrete Beams Subjected to Concentrated Transient Loading[D]. Pennsylvania State University, 2004.
[12]Sperrazza, Dependence of external blast damage to the A-25 aircraft on peak pressure and impulse[P]. Ballistic research laboratories memorandum report 575.1951,9, AD 378275.
[13]Sohn J M, Kim S J, Kim B H, et al. Nonlinear structural consequence analysis of FPSO topside blastwalls[J]. Ocean Engineering, 2013, 60: 149-162.
[14]J.W.Boh,L.A.Louca,Y.S.Choo. Energy absorbing impact barrier for profiled blast walls. International Journal of Impact Engineering[J],2005.31:976-995.
[15]R.M.Mohamed Ali, L.A.Louca. Performance based design of blast resistant offshore topsides, Part Ⅰ:Philosophy. Journal of Constructional Steel Research, 2008, 64:1030-1045.

相似文献/References:

[1]李毅,熊亮,邓海发,等.SIL评估及HAZOP分析技术在海洋平台安全评估中的应用[J].中国安全生产科学技术,2013,9(8):119.[doi:10.11731/j.issn.1673-193x.2013.08.022]
 LI Yi,XIONG Liang,DENG Hai fa,et al.Application of SIL evaluation and HAZOP analysis technology in safety assessment of offshore platform[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(4):119.[doi:10.11731/j.issn.1673-193x.2013.08.022]
[2]任录,安海静,王聚峰,等.绥中361油田气驱替技术的风险与对策[J].中国安全生产科学技术,2009,5(6):160.
 REN Lu,AN Hai jing,WANG Ju feng,et al.Risk and countermeasures of gas injection displacement technology in Suizhong 361 oil field[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(4):160.
[3]杨冬冬,陈国明,师吉浩.海洋平台井喷含硫天然气扩散危险区域研究[J].中国安全生产科学技术,2017,13(8):114.[doi:10.11731/j.issn.1673-193x.2017.08.018]
 YANG Dongdong,CHEN Guoming,SHI Jihao.Research on dangerous region of H2S-containing natural gas diffusion resulting from offshore platform blowout[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(4):114.[doi:10.11731/j.issn.1673-193x.2017.08.018]
[4]姜盛玉,陈国明,李新宏,等.基于系统动力学的海洋平台安全脆弱性分析[J].中国安全生产科学技术,2019,15(5):49.[doi:10.11731/j.issn.1673-193x.2019.05.008]
 JIANG Shengyu,CHEN Guoming,LI Xinhong,et al.Analysis on safety vulnerability of offshore platform based on system dynamics[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(4):49.[doi:10.11731/j.issn.1673-193x.2019.05.008]
[5]刘俊雄,余建星,陈海成,等.障碍物排列方式对海洋平台蒸气云爆炸的影响[J].中国安全生产科学技术,2019,15(8):5.[doi:10.11731/j.issn.1673-193x.2019.08.001]
 LIU Junxiong,YU Jianxing,CHEN Haicheng,et al.Influence of arrangement modes of obstacles on vapor cloud explosion of offshore platform[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(4):5.[doi:10.11731/j.issn.1673-193x.2019.08.001]

备注/Memo

备注/Memo:
国家自然科学基金项目(51579246);中央高校基本科研业务费专项资金项目(15CX05018A)
更新日期/Last Update: 2016-05-05