|本期目录/Table of Contents|

[1]张建荣,张伟,赵挺生,等.流程生产安全数智化监测系统传感器故障诊断研究*[J].中国安全生产科学技术,2024,20(4):34-41.[doi:10.11731/j.issn.1673-193x.2024.04.005]
 ZHANG Jianrong,ZHANG Wei,ZHAO Tingsheng,et al.Research on sensor fault diagnosis in digital intelligence monitoring system of process production safety[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(4):34-41.[doi:10.11731/j.issn.1673-193x.2024.04.005]
点击复制

流程生产安全数智化监测系统传感器故障诊断研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年4期
页码:
34-41
栏目:
学术论著
出版日期:
2024-04-30

文章信息/Info

Title:
Research on sensor fault diagnosis in digital intelligence monitoring system of process production safety
文章编号:
1673-193X(2024)-04-0034-08
作者:
张建荣张伟赵挺生苗雨
(华中科技大学 土木与水利工程学院,湖北 武汉 430074)
Author(s):
ZHANG Jianrong ZHANG Wei ZHAO Tingsheng MIAO Yu
(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)
关键词:
流程生产传感器故障诊断核主元分析累积残差
Keywords:
process production sensor fault diagnosis kernel principal component analysis cumulative residual
分类号:
X924.2
DOI:
10.11731/j.issn.1673-193x.2024.04.005
文献标志码:
A
摘要:
为保障流程生产安全监测数据的准确性,提出1种结合核主元分析和累积残差贡献率法的故障诊断方法。首先提出“感知-汇聚-决策”的多层级数智化监控系统架构;针对感知层传感器,基于核主元分析构建故障检测模型并通过累积残差贡献率法定位故障传感器;以DYTG转炉厂连铸作业区进行实证分析。研究结果表明:该故障诊断方法在SPE指标上的平均检测率和平均误检率分别为95.28%和2.61%,在T2指标上的平均检测率和平均误检率分别为84.36%和1.71%,且针对4种故障形式均能精准定位故障传感器。研究结果有助于降低监测系统的维护成本,提升流程生产安全管控水平。
Abstract:
To ensure the accuracy of process production safety monitoring data,a fault diagnosis method that combined kernel principal component analysis and cumulative residual contribution rate method was proposed.A multi-level digital intelligence monitoring system architecture based on the “perception-aggregation-decision” paradigm was put forward.For the sensors in the perception layer,a fault detection model was constructed based on kernel principal component analysis,and the fault sensors were located by the cumulative residual contribution rate method.The continuous casting operation area in the DYTG converter plant was selected as the case analysis.The results show that the average detection rate and average false detection rate of the proposed fault diagnosis approach on the SPE index are 95.28% and 2.61%,respectively,while those on the T2 index are 84.36% and 1.71%,respectively.Furthermore,it can accurately locate the fault sensor for four kinds of fault forms.The research results are conducive to reduce the maintenance cost of the monitoring system,and improve the control level of process production safety.

参考文献/References:

[1]王秉.何为数智:数智概念的多重含义研究[J].情报杂志,2023,42(7):71-76. WANG Bing.What is data-intelligence:multiple meanings of data-intelligence[J].Journal of Intelligence,2023,42(7):71-76.
[2]张充,张伟,张建荣,等.“工业互联网+钢铁厂安全生产”管控系统架构研究[J].中国安全生产科学技术,2023,19(4):5-13. ZHANG Chong,ZHANG Wei,ZHANG Jianrong,et al.Study on management and control system architecture of“work safety of steel plants combined with Industrial Internet”[J].Journal of Safety Science and Technology,2023,19(4):5-13.
[3]YANG H,HASSANS G,WANG L,et al.Fault diagnosis method for water quality monitoring and control equipment in aquaculture based on multiple SVM combined with D-S evidence theory[J].Computers and Electronics in Agriculture,2017,141:96-108.
[4]杨星,舒磊,黄凯,等.太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J].智慧农业(中英文),2020,2(2):11-27. YANG Xing,SHU Lei,HUANG Kai,et al.Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of things[J].Smart Agriculture,2020,2(2):11-27.
[5]程曦,漆随平,李志乾,等.降雨量传感器的故障诊断方法研究[J].传感技术学报,2021,34(1):89-95. CHENG Xi,QI Suiping,LI Zhiqian,et al.Research on fault diagnosis method of rainsensor[J].Chinese Journal of Sensors and Actuators,2021,34(1):89-95.
[6]LI D,WANG Y,WANG J,et al.Recent advances in sensor fault diagnosis:a review[J].Sensors and Actuators A Physical,2020,309:111990.
[7]MILETIC I,QUINNS,DUDZICM,et al.An industrial perspective on implementing on-line applications of multivariate statistics[J].Journal of Process Control,2004,14(8):821-836.
[8]胡顺仁,李瑞平,包明,等.基于主元分析的桥梁挠度传感器故障诊断研究[J].传感器与微系统,2014,33(6):9-12. HU Shunren,LI Ruiping,BAO Ming,et al.Bridge deflection sensor fault diagnosis research based on PCA[J].Transducer and Microsystem Technologies,2014,33(6):9-12.
[9]SCHLKOPF B,SMOLA A,MULLER K.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.
[10]LEE J M,YOO C K,CHOI S W,et al.Nonlinear process monitoring using kernel principal component analysis[J].Chemical Engineering Science,2004(1):59.
[11]彭红星,潘梨莉,赵鸿图.基于KPCA的监控系统传感器异常诊断方法[J].传感器与微系统,2016,35(12):33-36. PENG Hongxing,PAN Lili,ZHAO Hongtu.Study on abnormal diagnosis of sensor in monitoring system based on KPCA[J].Transducer and Microsystem Technologies,2016,35(12):33-36.
[12]武凯,孙彦广,张琳.基于核主成分分析的热连轧断带故障诊断[J].中国冶金,2020,30(11):60-65. WU Kai,SUN Yanguang,ZHANG Lin.Fault diagnosis of strip breaking in hot strip rolling based on kernel principal component analysis[J].China Metallurgy,2020,30(11):60-65.
[13]JIANG H Q,GAO X,GAO Z Y,et al.A dual-parameter optimization KPCA method for process fault diagnosis[C]//2015 Annual Reliability and Maintainability Symposium (RAMS),2015:1-7.
[14]付宇涵,马冬妍,唐旖浓,等.工业互联网平台赋能流程制造行业转型升级场景分析[J].科技导报,2022,40(10):129-136. FU Yuhan,MA Dongyan,TANG Yinong,et al.Industrial Internet platform empowers process manufacturing industry[J].Science & Technology Review,2022,40(10):129-136.
[15]安星,刘纲,张亮亮,等.基于累积残差贡献率的传感器故障定位方法[J].土木与环境工程学报(中英文),2019,41(2):133-139. AN Xing,LIU Gang,ZHANG Liangliang,et al.Sensor fault location method based on cumulative residual contribution rate[J].Journal of Civil and Environmental Engineering,2019,41(2):133-139.

相似文献/References:

[1]赵恩彪.采煤工作面粉尘浓度分布及传感器的部署[J].中国安全生产科学技术,2012,8(11):85.
 ZHAO En biao.Study on concentration of dust distribution and deployment of sensor in coal mining face[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(4):85.
[2]刘剑,李雪冰,高科,等.井巷风速单点测试方法及其可行性研究[J].中国安全生产科学技术,2016,12(8):23.[doi:10.11731/j.issn.1673-193x.2016.08.004]
 LIU Jian,LI Xuebing,GAO Ke,et al.Study on single-point measurement method of roadway air velocity and its feasibility[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(4):23.[doi:10.11731/j.issn.1673-193x.2016.08.004]
[3]张守鑫,杨博,周川,等.滤毒罐寿命失效指示器的研究进展[J].中国安全生产科学技术,2019,15(8):51.[doi:10.11731/j.issn.1673-193x.2019.08.008]
 ZHANG Shouxin,YANG Bo,ZHOU Chuan,et al.Research progress on endofservicelife indicator for canisters[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(4):51.[doi:10.11731/j.issn.1673-193x.2019.08.008]

备注/Memo

备注/Memo:
收稿日期: 2023-09-15
* 基金项目: 国家重点研发计划项目(2021YFB3301100)
作者简介: 张建荣,博士研究生,主要研究方向为安全智能监控、安全生产数字化管控理论。
通信作者: 张伟,博士,副教授,主要研究方向为安全智能监控、安全生产数字化管控理论、安全信息学。
更新日期/Last Update: 2024-05-09