|本期目录/Table of Contents|

[1]孙璐璐,李长俊,贾文龙,等.大落差输油管道局部高点水击压力预测方程研究*[J].中国安全生产科学技术,2022,18(6):172-177.[doi:10.11731/j.issn.1673-193x.2022.06.026]
 SUN Lulu,LI Changjun,JIA Wenlong,et al.Study on prediction equation of water hammer pressure at local high point of oil pipeline with large drop[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(6):172-177.[doi:10.11731/j.issn.1673-193x.2022.06.026]
点击复制

大落差输油管道局部高点水击压力预测方程研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年6期
页码:
172-177
栏目:
职业安全卫生管理与技术
出版日期:
2022-06-30

文章信息/Info

Title:
Study on prediction equation of water hammer pressure at local high point of oil pipeline with large drop
文章编号:
1673-193X(2022)-06-0172-06
作者:
孙璐璐李长俊贾文龙张财功余秋爽罗金华
(西南石油大学 石油与天然气工程学院,四川 成都 610500)
Author(s):
SUN Lulu LI Changjun JIA Wenlong ZHANG Caigong YU Qiushuang LUO Jinhua
(Petroleum Engineering School,Southwest Petroleum University,Chengdu Sichuan 610500,China)
关键词:
输油管道大落差水击压力局部高点压力预测
Keywords:
oil pipeline large drop water hammer pressure local high point pressure prediction
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2022.06.026
文献标志码:
A
摘要:
为预测大落差管道局部高点水击压力,避免在关阀、停泵等应急操作过程中因高点低压而使油品气化,采用OLGA软件水击计算模块分析介质流速、高点稳态压力、关阀时间、阀门位置对高点水击压力的影响机制,并结合国内某原油管道现场SCADA系统数据进行验证;采用通用全局优化算法(UGO)和列文伯格-马夸尔特法(LM)建立局部高点压力预测方程,相对误差在5%以内。研究结果表明:本文方程可实现大落差输油管道水击过程中局部高点水击压力的预测。研究结果可为大落差输油管道安全运行与管理提供参考。
Abstract:
In order to predict the water hammer pressure at local high points of pipeline with large drop and avoid the oil gasification due to low pressure at high points during the valve closing,pump stopping and other emergency operation processes,the water hammer calculation module of OLGA software was used to analyze the influence mechanism of medium flow velocity,high point steady-state pressure,valve closing time and valve position on the high point water hammer pressure,and the results were verified by comparing with the field SCADA system data of a domestic crude oil pipeline.The prediction equation of high point water hammer pressure was established by using the Universal Global Optimization (UCO) and the Levenberg Marquardt (LM) and the relative error was less than 5%.The results showed that the established equation can predict the water hammer pressure at high points during the water hammer process of oil pipelines with large drop.The research results can provide reference for the safe operation and management of pipe with large drop.

参考文献/References:

[1]邹永胜,梁俊,高建章,等.中缅原油管道智能化运行辅助决策系统建设方案[J].油气储运,2021,40(3):1-9. ZOU Yongsheng,LIANG Jun,GAO Jianzhang,et al.Construction plan of intelligent decision support system for China-Myanmar crude oil pipeline[J].Oil & Gas Storage and Transportation,2021,40(3):1-9.
[2]赵莉.多处断流弥合水锤的水力过渡流态分析及预测控制研究[D].西安:长安大学,2017.
[3]孙昭洋.输油管道瞬变水击研究[J].当代化工,2015,44(1):67-68. SUN Zhaoyang.Research on pipeline water hammer[J].Contemporary Chemical Industry,2015,44(1):67-68.
[4]贾文龙,李长俊,吴瑕,等.输油管道液柱分离模拟[J].西安石油大学学报,2010,25(3):52-55,88. JIA Wenlong,LI Changjun,WU Xia,et al.Simulation of liquid-column separation in oil pipeline[J].Journal of Xi’an University & Natural Science Edition,2010,25(3):52-55,88.
[5]梅春林,张存华,隋民,等.输油管道的水击分析及保护[J].现代化工,2016,36(11):208-209. MEI Chunlin,ZHANG Cunhua,SUI Min,et al.Water hammer analysis and protection of oil transmission pipeline[J].Modern Chemical Industry,2016,36(11):208-209.
[6]苑莉钗,高炉,翟建习.液柱分离对管道的危害及其预防[J].油气储运,2003(11):16-17,66-64. YUAN Lichai,GAO Lu,ZHAI Jianxi.Harm of liquid column separation to pipeline and prevention[J].Oil & Gas Storage and Transportation,2003(11):16-17,66-64.
[7]李伟,武明,武志坤,等.海底液相管道水击压力动态计算研究[J].石油工程建设,2018,44(3):7-11. LI Wei,WU Ming,WU Zhikun,et al.Study on dynamic calculation of surge pressure for subsea liquid pipeline[J].Petroleum Engineering Construction,2018,44(3):7-11.
[8]肖学,李传奇,杨幸子.管道瞬变流水击计算模型全局参数敏感性分析[J].人民黄河,2020,42(4):157-160. XIAO Xue,LI Chuanqi,YANG Xingzi.Analysis on global parameter sensitivity of fluid transient water hammer calculation model[J].Yellow River,2020,42(4):157-160.
[9]SALEM K M,MASHINA M E,DEKAM E I.Sizing air vessels for water hammer protection in water pipelines[J].Journal of Engineering Research,2017(23):47-62.
[10]KODURA A,STEFANEK P,WEINEROWSKA-BORDS K.An experimental and numerical analysis of water hammer phenomenon in slurries[J].Journal of Fluids Engineering,2017,139(12):11-17.
[11]FENG T,ZHANG D,SONG P,et al.Numerical research on water hammer phenomenon of parallel pump-valve system by coupling Fluent with Relap5[J].Annals of Nuclear Energy,2017,109:318-326.
[12]RIASI A,NOURBAKHSH A,RAISEE M.Energy dissipation in unsteady turbulent pipe flows caused by water hammer[J].Computers & Fluids,2013,73(6):124.
[13]TAE-OH K,HYO-MIN J,HAN-SHIK C,et al.CFD analysis of the anti-surge effects by water hammering[J].IOP Conference Series:Materials Science and Engineering,2015,88(1):32-37.
[14]陆赛华,宋付权.长距离成品油输送管线瞬态水击现象的数值模拟研究[J].石油库与加油站,2018,27(6):7-11,14. LU Saihua,SONG Fuquan.Numerical simulation of transient water hammer in long-distance oil product pipeline[J].Oil Depot and Gas Station,2018,27(6):7-11,14.
[15]AMMAR H T,AL-ZAHRANI M A.Water hammer analysis for Khobar-Dammam water transmission ring line[J].Arabian Journal for Science & Engineering,2015,40(8):2183-2199.
[16]张国忠.管道瞬变流动分析[M].东营:石油大学出版社,1994.
[17]蔡微微.水击试验与数值仿真研究[D].昆明:昆明理工大学,2020.
[18]孙强.长距离输水管道抗水锤压力罐参数优化研究[D].哈尔滨:哈尔滨工业大学,2011.
[19]马茜.中缅原油管道怒江跨越段投产过程研究[D].成都:西南石油大学,2019.
[20]LEE W H.A pressure iteration scheme for two-phase flow modeling[M].Washington,DC:Hemisphere Publishing,1980.

相似文献/References:

[1]魏沁汝,姚安林.基于多米诺效应的输油管道重大事故后果分析[J].中国安全生产科学技术,2014,10(11):168.[doi:10.11731/j.issn.1673-193x.2014.11.029]
 WEI Qin-ru,YAO An-lin.Analysis on consequences of major accidents in oil pipeline based on domino effect[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(6):168.[doi:10.11731/j.issn.1673-193x.2014.11.029]
[2]李凤,易俊,等.基于SVM的CO2驱油藏输油管道脆弱性评价研究[J].中国安全生产科学技术,2015,11(8):157.[doi:10.11731/j.issn.1673-193x.2015.08.026]
 LI Feng,YI Jun,,et al.Study on vulnerability evaluation of oil pipeline for CO2 flooding reservoir based on SVM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(6):157.[doi:10.11731/j.issn.1673-193x.2015.08.026]
[3]刘沛华,陈刚,李志潇.基于光电子能谱的高含水输油管道内壁腐蚀减薄试验分析[J].中国安全生产科学技术,2016,12(6):116.[doi:10.11731/j.issn.1673-193x.2016.06.021]
 LIU Peihua,CHEN Gang,LI Zhixiao.Experimental analysis on internal wall corrosion thinning phenomenon of oil transmission pipelines with high water cut based on photoelectron spectroscopy[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):116.[doi:10.11731/j.issn.1673-193x.2016.06.021]
[4]史晓蒙,吕宇玲,杨玉婷.地面输油管道泄漏流散数值模拟[J].中国安全生产科学技术,2017,13(1):90.[doi:10.11731/j.issn.1673-193x.2017.01.015]
 SHI Xiaomeng,LYU Yuling,YANG Yuting.Numerical simulation on spread after leakage of ground oil pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):90.[doi:10.11731/j.issn.1673-193x.2017.01.015]
[5]佟淑娇,王如君,李应波,等.基于VPL的输油管道实时泄漏检测系统[J].中国安全生产科学技术,2017,13(4):117.[doi:10.11731/j.issn.1673-193x.2017.04.019]
 TONGShujiao,WANG Rujun,LI Yingbo,et al.Real-time leakage detection system of oil pipeline based on VPL[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(6):117.[doi:10.11731/j.issn.1673-193x.2017.04.019]
[6]凌晓,徐鲁帅,梁瑞,等.基于改进PSO-BPNN的输油管道内腐蚀速率研究[J].中国安全生产科学技术,2019,15(10):63.[doi:10.11731/j.issn.1673-193x.2019.10.010]
 LING Xiao,XU Lushuai,LIANG Rui,et al.Study on internal corrosion rate of oil pipeline based on improved PSO-BPNN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(6):63.[doi:10.11731/j.issn.1673-193x.2019.10.010]
[7]刘恩斌,彭勇,闪从新,等.大落差原油管道投产油顶水过程研究[J].中国安全生产科学技术,2019,15(10):69.[doi:10.11731/j.issn.1673-193x.2019.10.011]
 LIU Enbin,PENG Yong,SHAN Congxin,et al.Study on oil pushing water process in commissioning of crude oil pipeline with big drop[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(6):69.[doi:10.11731/j.issn.1673-193x.2019.10.011]

备注/Memo

备注/Memo:
收稿日期: 2021-09-25
* 基金项目: 国家自然科学基金项目(51974269)
作者简介: 孙璐璐,硕士研究生,主要研究方向为油气管道输送安全及工程应用。
通信作者: 李长俊,硕士,教授,主要研究方向为油气管道输送系统多相流理论与技术。
更新日期/Last Update: 2022-07-10