|本期目录/Table of Contents|

[1]凌晓,徐鲁帅,梁瑞,等.基于改进PSO-BPNN的输油管道内腐蚀速率研究[J].中国安全生产科学技术,2019,15(10):63-68.[doi:10.11731/j.issn.1673-193x.2019.10.010]
 LING Xiao,XU Lushuai,LIANG Rui,et al.Study on internal corrosion rate of oil pipeline based on improved PSO-BPNN[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(10):63-68.[doi:10.11731/j.issn.1673-193x.2019.10.010]
点击复制

基于改进PSO-BPNN的输油管道内腐蚀速率研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年10期
页码:
63-68
栏目:
职业安全卫生管理与技术
出版日期:
2019-10-31

文章信息/Info

Title:
Study on internal corrosion rate of oil pipeline based on improved PSO-BPNN
文章编号:
1673-193X(2019)-10-0063-06
作者:
凌晓徐鲁帅梁瑞郭凯崔本廷岳守体
(1.兰州理工大学 石油化工学院,甘肃 兰州 730050;
2.太原卫星发射中心 山西 太原 030027)
Author(s):
LING Xiao XU Lushuai LIANG Rui GUO Kai CUI Benting YUE Shouti
(1.College of Petroleum and Chemical Engineering,Lanzhou University of Technology,Lanzhou Gansu 730050,China;
2.Taiyuan Satellite Launch Center,Taiyuan Shanxi 030027,China)
关键词:
输油管道粒子群算法BP神经网络腐蚀速率
Keywords:
oil pipeline particle swarm optimization(PSO) BP neural network corrosion rate
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2019.10.010
文献标志码:
A
摘要:
为解决输油管道易腐蚀,且腐蚀程度难以测量的问题,提出使用改进的粒子群算法(PSO)优化误差反向传播神经网络(BPNN)对输油管道内腐蚀速率进行预测。改进的PSO算法提升了自身搜索到全局最优的能力,可为BPNN提供最优初始权值和阈值,从而有效避免BPNN易陷入局部最优的问题发生。以某条输油管线为例,分别运用标准的BPNN模型、PSO-BPNN以及改进的PSO-BPNN对该管线内腐蚀速率进行预测。结果表明:基于改进的PSO-BPNN的预测结果平均相对误差为5.57%,预测精度较BPNN和PSO-BPNN有明显提升。使用改进的PSO-BPNN预测输油管道的腐蚀速率可为管道的检测维修提供可靠的理论和技术支撑。
Abstract:
In order to solve the problems that the oil pipeline is easy to occur the corrosion and the corrosion degree is difficult to measure,it was proposed to predict the internal corrosion rate of oil pipeline by using the improved particle swarm optimization (PSO) to optimize the back propagation neural network (BPNN).The improved PSO algorithm promoted its ability to search for global optimum,which could provide the optimal initial weights and thresholds for BPNN,thus effectively avoid the problem that BPNN is prone to fall into local optimum.Taking a certain oil pipeline as an example,the standard BPNN model,PSO-BPNN and improved PSO-BPNN were used respectively to predict the internal corrosion rate of this pipeline.The results showed that the average relative error of prediction results based on the improved PSO-BPNN was 5.57%,and the prediction accuracy was significantly improved compared with those of BPNN and PSO-BPNN.So predicting the corrosion rate of oil pipelines by using the improved PSO-BPNN can provide the reliable theoretical and technical support for the inspection and maintenance of pipelines.

参考文献/References:

[1]张晓,帅健.基于FITNET FFS模型的腐蚀管道失效概率敏感性分析[J].中国安全生产科学技术,2018,14(8):80-85. ZHANG Xiao,SHUAI Jian.Sensitivity analysis on failure probability of corroded pipeline based on FITNET FFS model[J].Journal of Safety Science and Technology,2018,14(8):80-85.
[2]燕冰川,刘猛,冯庆善,等.长输油气管道内腐蚀研究进展[J].管道技术与设备,2016(6):40-42. YAN Bingchuan,LIU Meng,FENG Qingshan,et al.Internal corrosion research progress for long distance oil and gas pipeline[J].Pipeline Technique and Equipment,2016(6):40-42.
[3]狄彦,帅健,王晓霖,等.油气管道事故原因分析及分类方法研究[J].中国安全科学学报,2013,23(7):109-115. DI Yan,SHUAI Jian,WANG Xiaolin,et al.Study on methods for classifying oil & gas pipeline incidents[J].China Safety Science Journal,2013,23(7):109-115.
[4]梁裕如,姬丙寅.某输油管道腐蚀泄漏失效原因分析[J].表面技术,2016,45(8):68-73. LIANG Yuru,JI Bingyin.Failure analysis of corrosion leakage for oil pipeline[J].Surface Technology,2016,45(8):68-73.
[5]徐子洋.输油管道安全管理问题与对策[J].中国石油和化工标准与质量,2018,38(19):65-66. XU Ziyang.Problems and countermeasures of oil pipeline safety management[J].China Petroleum and Chemical Standard and Quality,2018,38 (19):65-66.
[6]张河苇,金剑,董绍华,等.一种基于管道大数据的腐蚀因素相关性分析方法[J].科学通报,2018,63(8):777-783. ZHANG Hewei,JIN Jian,DONG Shaohua,et al.A corrosion correlation analysis method based on pipeline big data[J].Chinese Science Bulletin,2018,63(8):777-783.
[7]王天瑜,吴宗之,王如君,等.基于改进灰关联分析法的埋地管道土壤腐蚀性评价[J].中国安全生产科学技术,2016,12(3):133-136. WANG Tianyu,WU Zongzhi,WANG Rujun,et al.Evaluation on soil corrosion of buried pipelines based on improved grey relational analysis method[J].Journal of Safety Science and Technology,2016,12(3):133-136.
[8]SENOUCI A,ELABBASY M,ELWAKIL E,et al.A model for predicting failure of oil pipelines[J].Structure and Infrastructure Engineering,2014,10(3):375-387.
[9]章玉婷,杨剑锋.基于BP神经网络的管道腐蚀速率预测[J].全面腐蚀控制,2013,27(9):67-71. ZHANG Yuting,YANG Jianfeng.Corrosion rate prediction of pipeline based on BP artificial neural network[J].Total Corrosion Control,2013,27 (9):67-71.
[10]卢辉斌,李丹丹,孙海艳.PSO优化BP神经网络的混沌时间序列预测[J].计算机工程与应用,2015,51(2):224-229,264. LU Huibin,LI Dandan,SUN Haiyan.Prediction for chaotic time series of optimized BP neural network based on PSO[J].Computer Engineering and Applications,2015,51(2):224-229,264.
[11]韩小明,苗绘,王哲.基于大数据和神经网络的管道完整性预测方法[J].油气储运,2015,34(10):1042-1046. HAN Xiaoming,MIAO Hui,WANG Zhe.Pipeline integrity prediction method based on big data and neutral network[J].Oil &Gas Storage and Transportation,2015,34(10):1042-1046.
[12]徐星,郭兵兵,王公忠.人工神经网络在矿井多水源识别中的应用[J].中国安全生产科学技术,2016,12(1):181-185. XU Xing,GUO Bingbing,WANG Gongzhong.Application of artificial neural network for recognition of multiple water sources in mine[J].Journal of Safety Science and Technology,2016,12(1):181-185.
[13]杨继星,佘笑梅,黄玉钏,等.基于BP神经网络的苯储罐泄漏事故风险评价模型研究[J].中国安全生产科学技术,2019,15(1):157-162. YANG Jixing,SHE Xiaomei,HUANG Yuchuan,et al.Research on risk assessment model for leakage accident of benzene tank based on BP neural network[J].Journal of Safety Science and Technology,2019,15(1):157-162.
[14]侯媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
[15]蔡荣辉,崔雨轩,薛培静.三层BP神经网络隐层节点数确定方法探究[J].电脑与信息技术,2017,25(5):29-33. CAI Ronghui,CUI Yuxuan,XUE Peijing.Research on the methods of determining the number of hidden nodes in three-layer BP neural network[J].Computer and Information Technology,2017,25(5):29-33.
[16]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009.
[17]刘丽芳.粒子群算法的改进及应用[D].太原:太原理工大学,2008.
[18]马颖,田维坚,樊养余.基于云模型的自适应量子粒子群算法[J].模式识别与人工智能,2013,26(8):787-793. MA Ying,TIAN Weijian,FAN Yangyu.Adaptive quantum-behaved particle swarm optimization algorithm based on cloud model[J].Pattern Recognition and Artificial Intelligence,2013,26(8):787-793.
[19]吴庆伟,王金龙,张平.基于FOA-SVM模型的输油管道内腐蚀速率预测[J].腐蚀与防护,2017,38(9):732-736. WU Qingwei,WANG Jinlong,ZHANG Ping.Prediction of oil pipeline internal corrosion rate based on FOA-SVM model [J].Corrosion & Protection,2017,38(9):732-736.

相似文献/References:

[1]魏沁汝,姚安林.基于多米诺效应的输油管道重大事故后果分析[J].中国安全生产科学技术,2014,10(11):168.[doi:10.11731/j.issn.1673-193x.2014.11.029]
 WEI Qin-ru,YAO An-lin.Analysis on consequences of major accidents in oil pipeline based on domino effect[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(10):168.[doi:10.11731/j.issn.1673-193x.2014.11.029]
[2]李凤,易俊,等.基于SVM的CO2驱油藏输油管道脆弱性评价研究[J].中国安全生产科学技术,2015,11(8):157.[doi:10.11731/j.issn.1673-193x.2015.08.026]
 LI Feng,YI Jun,,et al.Study on vulnerability evaluation of oil pipeline for CO2 flooding reservoir based on SVM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(10):157.[doi:10.11731/j.issn.1673-193x.2015.08.026]
[3]刘沛华,陈刚,李志潇.基于光电子能谱的高含水输油管道内壁腐蚀减薄试验分析[J].中国安全生产科学技术,2016,12(6):116.[doi:10.11731/j.issn.1673-193x.2016.06.021]
 LIU Peihua,CHEN Gang,LI Zhixiao.Experimental analysis on internal wall corrosion thinning phenomenon of oil transmission pipelines with high water cut based on photoelectron spectroscopy[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):116.[doi:10.11731/j.issn.1673-193x.2016.06.021]
[4]史晓蒙,吕宇玲,杨玉婷.地面输油管道泄漏流散数值模拟[J].中国安全生产科学技术,2017,13(1):90.[doi:10.11731/j.issn.1673-193x.2017.01.015]
 SHI Xiaomeng,LYU Yuling,YANG Yuting.Numerical simulation on spread after leakage of ground oil pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):90.[doi:10.11731/j.issn.1673-193x.2017.01.015]
[5]戴君,王晶,易显强.灾后应急资源配送的LRP模型与算法研究[J].中国安全生产科学技术,2017,13(1):122.[doi:10.11731/j.issn.1673-193x.2017.01.020]
 DAI Jun,WANG Jing,YI Xianqiang.Study on LRP model and algorithm for emergency resource distribution after disaster[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):122.[doi:10.11731/j.issn.1673-193x.2017.01.020]
[6]佟淑娇,王如君,李应波,等.基于VPL的输油管道实时泄漏检测系统[J].中国安全生产科学技术,2017,13(4):117.[doi:10.11731/j.issn.1673-193x.2017.04.019]
 TONGShujiao,WANG Rujun,LI Yingbo,et al.Real-time leakage detection system of oil pipeline based on VPL[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):117.[doi:10.11731/j.issn.1673-193x.2017.04.019]
[7]张阔,李国勇,韩方阵.故障树法和改进PSO-PNN网络的电梯故障诊断模型[J].中国安全生产科学技术,2017,13(9):175.[doi:10.11731/j.issn.1673-193x.2017.09.028]
 ZHANG Kuo,LI Guoyong,HAN Fangzhen.Diagnosis model of elevator fault based on fault tree analysis and improved PSO-PNN network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):175.[doi:10.11731/j.issn.1673-193x.2017.09.028]
[8]刘恩斌,彭勇,闪从新,等.大落差原油管道投产油顶水过程研究[J].中国安全生产科学技术,2019,15(10):69.[doi:10.11731/j.issn.1673-193x.2019.10.011]
 LIU Enbin,PENG Yong,SHAN Congxin,et al.Study on oil pushing water process in commissioning of crude oil pipeline with big drop[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(10):69.[doi:10.11731/j.issn.1673-193x.2019.10.011]

备注/Memo

备注/Memo:
收稿日期: 2019-08-25
* 基金项目: 甘肃省重点研发计划-工业类(1604GKCA022)
作者简介: 凌晓,博士,副教授,主要研究方向为油气储运设备完整性管理。
更新日期/Last Update: 2019-11-05