|本期目录/Table of Contents|

[1]王文和,董传富,刘林精,等.基于贝叶斯网络的城市地下燃气管网动态风险分析[J].中国安全生产科学技术,2019,15(5):55-62.[doi:10.11731/j.issn.1673-193x.2019.05.009]
 WANG Wenhe,DONG Chuanfu,LIU Linjing,et al.Dynamic risk analysis of urban buried gas pipeline network based on Bayesian network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(5):55-62.[doi:10.11731/j.issn.1673-193x.2019.05.009]
点击复制

基于贝叶斯网络的城市地下燃气管网动态风险分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年5期
页码:
55-62
栏目:
职业安全卫生管理与技术
出版日期:
2019-05-31

文章信息/Info

Title:
Dynamic risk analysis of urban buried gas pipeline network based on Bayesian network
文章编号:
1673-193X(2019)-05-0055-08
作者:
王文和12董传富1刘林精1李凤3
(1.重庆科技学院 安全工程学院,重庆 401331;
2.重庆市安全生产科学研究院,重庆 401331;
3.重庆大学 资源及环境科学学院,重庆 400044 )
Author(s):
WANG Wenhe12 DONG Chuanfu1 LIU Linjing1 LI Feng3
(1. College of Safety Engineering, Chongqing University of Science & Technology, Chongqing 401331, China;
2. Chongqing Academy of Safety Science and Technology, Chongqing 401331, China;
3. College of Resources and Environmental Science, Chongqing
关键词:
燃气管道动态风险分析蝴蝶结贝叶斯网络概率改变
Keywords:
gas pipeline dynamic risk analysis bowtie Bayesian network probability change
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2019.05.009
文献标志码:
A
摘要:
为研究城市燃气管网风险的动态性,针对传统风险分析方法的局限性,提出基于贝叶斯网络的燃气管网动态风险分析方法。构建燃气管网失效蝴蝶结模型并将其转化为贝叶斯网络模型;在事故发生状态下更新事件失效概率,识别出关键因素;根据异常事件数据和贝叶斯理论,对基本事件失效概率进行实时动态改变;随之更新管网失效及各后果发生的概率,从而实现管网的动态风险分析。研究结果表明:该方法克服了传统风险分析方法的不足,可动态反映燃气管网失效和事故后果发生概率随时间变化的特征,能够为城市地下燃气管网的风险分析与事故预防提供参考。
Abstract:
In order to study the dynamic characteristic of the risk of urban gas pipeline network, aiming at the limitation of traditional risk analysis methods, a dynamic risk analysis method of gas pipeline network based on the Bayesian network was proposed. A Bowtie model on the failure of gas pipeline network was established and converted into the Bayesian network model, then the failure probabilities of events were updated in case of accident, and the key factors were identified. According to the data of abnormal events and the Bayesian theory, the realtime and dynamic change of the failure probabilities of basic events was carried out. Subsequently, the probabilities of pipeline network failure and each consequence were updated, thus the dynamic risk analysis of pipeline network was realized. The results showed that the method overcomes the shortcomings of traditional analysis methods, which can reflect the dynamic change characteristics of the probabilities of gas pipeline network failure and accident consequence with time, and provide reference for the risk analysis and accident prevention of urban buried gas pipeline network.

参考文献/References:

[1]韩朱旸,翁文国.燃气管网定量风险分析方法综述[J].中国安全科学学报, 2009, 19(7):154-164. HAN Zhuyang, WENG Wenguo. An overview of quantitative risk analysis methods for natural gas pipelines [J]. China Safety Science Journal, 2009, 19(7):154-164.
[2]张宇栋,吕淑然,杨凯.城市管道系统风险分析及闭环管理研究[J].中国安全生产科学技术, 2017, 13(2):181-187. ZHANG Yudong,LYU Shuran,YANG Kai. Research on risk analysis and closed-loop management of urban pipeline system [J]. Journal of Safety Science and Technology, 2017, 13(2):181-187.
[3]杨凯, 吕淑然, 张远.城市燃气输配管网耦合风险研究现状及展望[J].灾害学, 2016, 31(1):162-169. YANG Kai, LYU Shuran, ZHANG Yuan. Research status and prospects of coupled disaster risk for city gas pipeline network [J]. Journal of Catastrophology, 2016, 31(1):162-169.
[4]BAGHERI M, ALAMDARI A, DAVOUDI M. Quantitative risk assessment of sour gas transmission pipelines using CFD [J]. Journal of Natural Gas Science & Engineering, 2016, 31:108-118.
[5]SHAHRIAR A, SADIQ R, TESFAMARIAM S. Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy based bow-tie analysis [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(3):505-523.
[6]GUO Y, MENG X, MENG T, et al. A novel method of risk assessment based on cloud inference for natural gas pipelines [J]. Journal of Natural Gas Science & Engineering, 2016, 30:421-429.
[7]於孝春, 贾朋美, 张兴.基于模糊Bow-tie模型的城镇燃气管道泄漏定量风险评价[J].天然气工业, 2013, 33(7):134-139. YU Xiaochun, JIA Pengmei, ZHANG Xing. Quantitative risk assessment of urban gas pipelines based on the fuzzy bow-tie model [J]. Natural Gas Industry, 2013, 33(7):134-139.
[8]KHAKZAD N, KHANA F. Dynamic risk analysis using bow-tie approach [J]. Reliability Engineering & System Safety, 2012, 104:36-44.
[9]YUAN Z, KHAKZAD N, KHAN F, et al. Risk analysis of dust explosion scenarios using bayesian networks [J]. Risk Analysis, 2015, 35(2):278-291.
[10]KHAKZAD N, KHAN F, AMYOTTE P. Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network [J]. Process Safety & Environmental Protection, 2013, 91(2):46-53.
[11]YANG Y, KHAN F, THODI P, et al. Corrosion induced failure analysis of subsea pipelines [J]. Reliability Engineering & System Safety, 2017, 159:214-222.
[12]WANG W, SHEN K, WANG B, et al. Failure probability analysis of the urban buried gas pipelines using Bayesian networks [J]. Process Safety & Environmental Protection, 2017, 111:678-686.
[13]DONG Y, YU D. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(2):83-88.
[14]孙永庆, 李又绿, 张峥, 等. 城市埋地燃气管网失效树的研究[J]. 天然气工业, 2004, 24(11):124-126. SUN Yongqing,LI Youlyu,ZHANG Zheng,et al. Fault Tree Analysis for buried gas pipe network in cities [J]. Journal of Natural Gas Science & Engineering, 2004, 24(11):124-126.
[15]王春雪, 吕淑然. 城市燃气管道泄漏致灾混合概率风险评估研究[J].中国安全科学学报, 2016, 26(12):146-151. WANG Chunxue,LYU Shuran. Mixture probabilistic model based assessment of risk of disaster induced by urban gas pipeline leakage[J]. China Safety Science Journal, 2016, 26(12):146-151.
[16]周代军. 城市燃气管网定量风险评价指标体系的研究[D].成都:西南石油大学, 2012.
[17]张继旺,马庆春,张来斌. 基于FTA-BN模型的城市燃气管道失效风险分析[J].北京石油化工学院学报,2014,22(3):32-36. ZHANG Jiwang,MA Qingchun, ZHANG Laibin. The risk analysis of city gas pipeline failure based on FTA-BN model [J]. Journal of Beijing Institute of Petro-chemical Technology, 2014, 22(3):32-36.
[18]SINTEF, NTNU. Offshore and Onshore Reliability Data Handbook[M].Oslo:OREDA Participants, 2015.

相似文献/References:

[1]王文和,易俊,沈士明.基于风险的城市埋地燃气管道安全评价模型及应用[J].中国安全生产科学技术,2010,6(3):163.
 WANG Wen-he,YI Jun,SHEN Shi-ming.Safety evaluation model and application for the urban buried gas pipeline based on risk[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(5):163.
[2]李军,张宏,梁海滨,等.基于模糊综合评价的燃气管道第三方破坏失效研究[J].中国安全生产科学技术,2016,12(8):140.[doi:10.11731/j.issn.1673-193x.2016.08.024]
 LI Jun,ZHANG Hong,LIANG Haibin,et al.Study on failure of gas pipeline due to third party damage based on fuzzy comprehensive evaluation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(5):140.[doi:10.11731/j.issn.1673-193x.2016.08.024]
[3]陈萌,张来斌,郑文培,等.“三高”气田钻井过程硫化氢泄漏动态风险分析[J].中国安全生产科学技术,2016,12(11):17.[doi:10.11731/j.issn.1673-193x.2016.11.003]
 CHEN Meng,ZHANG Laibin,ZHENG Wenpei,et al.Dynamic risk analysis on hydrogen sulfide leakage during well drilling process in "three-high" gas field[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(5):17.[doi:10.11731/j.issn.1673-193x.2016.11.003]
[4]刘宽,安韵竹,胡元潮,等.电力线路与燃气管道交叉跨越点雷击事故防护研究[J].中国安全生产科学技术,2020,16(5):166.[doi:10.11731/j.issn.1673-193x.2020.05.026]
 LIU Kuan,AN Yunzhu,HU Yuanchao,et al.Research on protection of lightning strike accident at crossing point between power line and gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(5):166.[doi:10.11731/j.issn.1673-193x.2020.05.026]
[5]张瑞程,王新颖,胡磊磊,等.基于一维卷积神经网络的燃气管道泄漏声发射信号识别*[J].中国安全生产科学技术,2021,17(2):104.[doi:10.11731/j.issn.1673-193x.2021.02.016]
 ZHANG Ruicheng,WANG Xinying,HU Leilei,et al.Acoustic emission signal identification of gas pipeline leakage based on one-dimensional convolution neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(5):104.[doi:10.11731/j.issn.1673-193x.2021.02.016]
[6]唐宇峰,史君林,李涛.基于SPH方法的埋地PE燃气管道挖掘破坏数值模拟研究[J].中国安全生产科学技术,2021,17(7):54.[doi:10.11731/j.issn.1673-193x.2021.07.009]
 TANG Yufeng,SHI Junlin,LI Tao.Numerical simulation study on excavation failure of buried PE gas pipeline based on SPH method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(5):54.[doi:10.11731/j.issn.1673-193x.2021.07.009]
[7]刘恩斌,温櫂荣,郭冰燕,等.基于声信号特征分析的燃气管道探测识别方法*[J].中国安全生产科学技术,2022,18(4):61.[doi:10.11731/j.issn.1673-193x.2022.04.009]
 LIU Enbin,WEN Zhaorong,GUO Bingyan,et al.Detection and recognition methods of gas pipelines based on acoustic signal feature analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(5):61.[doi:10.11731/j.issn.1673-193x.2022.04.009]
[8]张宇航,戎思达,李慧,等.基于动态监测与事故树分析的超大深基坑风险分析方法研究*[J].中国安全生产科学技术,2023,19(9):89.[doi:10.11731/j.issn.1673-193x.2023.09.013]
 ZHANG Yuhang,RONG Sida,LI Hui,et al.Research on risk analysis method of super-large deep foundation pit based on dynamic monitoring and fault tree analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(5):89.[doi:10.11731/j.issn.1673-193x.2023.09.013]
[9]李乔楚,张鹏.集成灾害系统和D/I模型的岩溶区燃气管道致灾演化层次结构分析*[J].中国安全生产科学技术,2024,20(7):35.[doi:10.11731/j.issn.1673-193x.2024.07.005]
 LI Qiaochu,ZHANG Peng.Hierarchical structure analysis on disaster evolution of gas pipeline in karst area integrating disaster system and D/I model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(5):35.[doi:10.11731/j.issn.1673-193x.2024.07.005]
[10]徐哲,刘永滨,张季娜,等.基于文献计量的城镇燃气管道安全风险管理研究进展及热点可视化分析*[J].中国安全生产科学技术,2024,20(12):90.[doi:10.11731/j.issn.1673-193x.2024.12.012]
 XU Zhe,LIU Yongbin,ZHANG Jina,et al.Visualization analysis on research progress and hotspots insafety risk management of urban gas pipeline based on bibliometrics[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(5):90.[doi:10.11731/j.issn.1673-193x.2024.12.012]

备注/Memo

备注/Memo:
收稿日期: 2018-09-10
基金项目: 重庆市社会民生科技创新专项项目(cstc2016shmszx0384);重庆市基础科学与前沿技术研究重点项目(cstc2017jcyjBX0011)
作者简介: 王文和,博士,教授,主要研究方向为油气化工过程及装备安全技术。
更新日期/Last Update: 2019-06-11