|本期目录/Table of Contents|

[1]高月.活性化合物热稳定性预测技术研究进展[J].中国安全生产科学技术,2019,15(5):63-67.[doi:10.11731/j.issn.1673-193x.2019.05.010]
 GAO Yue.Research progress on prediction technologies for thermal stability of active compounds[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(5):63-67.[doi:10.11731/j.issn.1673-193x.2019.05.010]
点击复制

活性化合物热稳定性预测技术研究进展
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年5期
页码:
63-67
栏目:
职业安全卫生管理与技术
出版日期:
2019-05-31

文章信息/Info

Title:
Research progress on prediction technologies for thermal stability of active compounds
文章编号:
1673-193X(2019)-05-0063-05
作者:
高月12
(1.应急管理部化学品登记中心,山东 青岛 266071;2. 中国石油化工股份有限公司青岛安全工程研究院 化学品安全控制国家重点实验室,山东 青岛 266071)
Author(s):
GAO Yue12
(1. National Registration Center for Chemicals, Ministry of Emergency Management, Qingdao Shandong 266071, China;
2. State Key Laboratory of Chemicals Safety and Control, SINOPEC Safety Engineering Institute, Qingdao Shandong 266071, China)
关键词:
活性化合物热稳定性分子结构预测定量结构-性质相关性
Keywords:
active compounds thermal stability molecular structure prediction QSPR
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2019.05.010
文献标志码:
A
摘要:
为了研究活性化合物热稳定性预测技术,调研了国内外活性化合物热稳定性预测技术的发展情况,综述了活性化合物起始放热温度、分解热、自加速分解温度的预测方法,着重介绍了定量结构-性质相关性(QSPR)研究方法在热稳定性预测领域的应用情况,分析了活性化合物热稳定性预测早期研究情况。基于量子力学计算的QSPR研究情况、QSPR数据样本的选取、分子描述符的选取、QSPR建模方法的选择,提出了热稳定性QSPR预测领域中存在的问题,并对热稳定性QSPR预测技术未来的发展方向进行了展望。
Abstract:
In order to study the prediction technologies for the thermal stability of active compounds, the development status of prediction technologies for thermal stability of active compounds at home and abroad was investigated. The prediction methods of initial exothermic temperature, decomposition heat and selfaccelerating decomposition temperature of active compounds were summarized, and the application of the quantitative structureproperty relationship (QSPR) method in the field of thermal stability prediction was introduced emphatically. The early research on the thermal stability prediction of active compounds, the QSPR research situation based on quantum mechanics calculation, the selection of QSPR data samples, the determination of molecular descriptors and the selection of QSPR modeling methods were analyzed, then the existing problems in the QSPR prediction field of thermal stability were put forward, and the future development directions for QSPR prediction technology of thermal stability were prospected.

参考文献/References:

[1]ZHANG Y Y, PAN Y, JIANG J C, et al. Prediction of thermal stability of some reactive chemicals using the QSPR approach [J]. Journal of Environmental Chemical Engineering, 2014, 2 (2): 868-874.
[2]马继涛,时静洁,陈海群. 有机过氧化物自加速分解温度的QSPR研究[J]. 计算机与应用化学, 2017, 34(5): 369-375. MA Jitao, SHI Jingjie, CHEN Haiqun. Prediction of the self-accelerating decomposition temperature of organic peroxides based on the QSPR approach [J]. Computers and Applied Chemistry, 2017, 34 (5): 369-375.
[3]GAO Y, XUE Y, LYU Z, et al.Self-accelerating decomposition temperature and quantitative structure-property relationship of organic peroxides [J]. Process Safety & Environmental Protection, 2015, 94:322-328.
[4]BENSON S W, THERMOCHEMICAL K. Methods for the estimation of thermochemical data and rate parameters, 2nd ed[M]. New York:Wiley, 1976.
[5]ASTM. The ASTM computer program for chemical thermodynamic and energy release evaluation CHETAH: Version 10.0[EB/OL].[2019-01-31] https://www.astm.org/bookstore/pubs/ds51gol.htm.
[6]MOHAN V K, BECKER K R, HAY J E. Hazard evaluation of organic peroxides [J]. Journal of Hazardous Materials. 1982, 5 (3): 197-220.
[7]SATO Y, AKIYOSHI M, MIYAKE A, et al. Prediction of explosibility of self-reactive materials by calorimetry of a laboratory scale and thermochemical calculations[J]. Science and Technology of Energetic Materials. 2011, 72 (3): 97-105.
[8]E.C. Regulation(EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH) [Z]. 2006.
[9]ECHA. Guidance on information requirements and chemical safety assessment-Chapter R.7a: Endpoint specific guidance [Z]. 2008.
[10]ECHA. Guidance on information requirements and chemical safety assessment-Chapter R.7a: Endpoint specific guidance, version 2.1 [Z]. 2013.
[11]UN. Recommendations on the transport of dangerous goods: manual of tests and criteria, ST/SG/AC.10/11/Rev.6 [Z]. 2015.
[12]LEWIS A, KAZANTZIS N, FISHTIK I, et al. Integrating process safety with molecular modeling-based risk assessment of chemicals within the REACH regulatory framework: Benefits and future challenges [J]. Journal of Hazardous Materials, 2007, 142 (3): 592-602.
[13]OECD. Guidance document on the validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] models [Z]. 2007.
[14]蒋军成, 潘勇. QSPR在有机物燃烧特性预测中的应用和进展[J]. 南京工业大学学报(自然科学版),2007,29(6):102-110. JIANG Juncheng, PAN Yong. Advances and applications of quantitative structure property relationship studies in prediction of flammable characteristics of compounds [J]. Journal of Nanjing University of Technology, 2007, 29 (6): 102-110.
[15]SARAF S R, ROGERS W J, MANNAN M S. Prediction of reactive hazards based on molecular structure [J]. Journal of Hazardous Materials, 2003, 98 (1): 15-29.
[16]FAYET G, JOUBERT L, ROTUREAU P, et al. On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility [J]. Chemical Physics Letters, 2009, 467(4-6): 407-411.
[17]FAYET G, ROTUREAU P, JOUBERT L, et al. QSPR modeling of thermal stability of nitroaromatic compounds: DFTvs.AM1 calculated descriptors [J]. Journal of Molecular Modeling, 2010, 16 (4): 805-812.
[18]FAYET G, RIO A D, ROTUREAU P. Predicting the thermal stability of nitroaromatic compounds using chemoinformatic tools [J]. Molecular Informatics, 2011, 30(6-7): 623-634.
[19]LU Y, NG D, MANNAN M S. Prediction of the reactivity hazards for organic peroxides using the QSPR approach [J]. Industrial & Engineering Chemistry Research, 2011, 50 (3): 1515-1522.
[20]FAYET G, ROTUREAU P, ADAMO C. On the development of QSPR models for regulatory frameworks: The heat of decomposition of nitroaromatics as a test case [J]. Journal of Loss Prevention in the Process Industries, 2013, 26 (6): 1100-1105.
[21]PAN Y, ZHANG Y Y, JIANG J C, et al. Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structure-property relationship (QSPR) approach [J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 41-49.
[22]ZHOU L, WANG B, JIANG J, et al. Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds [J]. Thermochimica Acta, 2017, 655:112-116.
[23]SAFDER U, NAM K J, KIM D, et al. Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network [J]. Ecotoxicology & Environmental Safety, 2018, 162:17.
[24]WANG B, HANG Y, XU K, et al. Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models [J]. Journal of Thermal Analysis & Calorimetry, 2017, 128(1):399-406.
[25]HE P, PAN Y, JIANG J C. Prediction of the self-accelerating decomposition temperature of organic peroxides based on support vector machine [J]. Procedia Engineering, 2018, 211: 215-225.
[26]TROPSHA A, GRAMATICA P, GOMBAR V K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models [J]. QSAR & Combinatorial Science, 2003, 22 (1): 69-77.
[27]时静洁. 有机物的结构与粘度等安全参数的定量构效关系模型研究[D].南京:南京理工大学,2015.
[28]时静洁,袁雄军,邵辉,等. 基于遗传算法对有机物热导率的预测研究[J]. 常州大学学报(自然科学版), 2017, 29(1): 86-92. SHI Jingjie, YUAN Xiongjun, SHAO Hui, et al. Prediction of the thermal conductivity of organic compounds based on the genetic algorithm[J]. Journal of Changzhou University (Natural Science Edition), 2017, 29(1): 86-92.

相似文献/References:

[1]吴保意,霍明甲,张金梅,等.丁基钠黄药热稳定性的研究[J].中国安全生产科学技术,2012,8(9):67.
 WU Bao yi,HUO Ming jia,ZHANG Jin mei,et al.Study on the thermal stability of sodium nbutyl xanthate[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(5):67.
[2]王〓康,张金梅,张〓晨.二溴海因危险性试验研究[J].中国安全生产科学技术,2012,8(8):84.
 WANG Kang,ZAHNG Jin mei,ZHANG Chen.Experimental study on the hazardous characteristics of 1,3dibromo5,5dimethylhydantoin[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(5):84.
[3]张帆,谢传欣,徐伟,等.环氧丙烷在不同条件下的反应稳定性研究[J].中国安全生产科学技术,2013,9(5):29.[doi:10.11731/j.issn.1673-193x.2013.05.006]
 ZHANG Fan,XIE Chuan xin,XU Wei,et al.Study on thermal stability of propylene oxide in different environments[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):29.[doi:10.11731/j.issn.1673-193x.2013.05.006]
[4]吴保意,郭璐,张金梅,等.二氧化硫脲自热危险性的研究[J].中国安全生产科学技术,2013,9(9):19.[doi:10.11731/j.issn.1673-193x.2013.09.004]
 WU Bao yi,GUO Lu,ZHANG Jin mei,et al.Study on selfheating hazard of thiourea dioxide[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(5):19.[doi:10.11731/j.issn.1673-193x.2013.09.004]
[5]蒋慧灵,蒋治洪.氯化钠和二氧化硅对过硫酸铵热稳定性的影响[J].中国安全生产科学技术,2015,11(12):129.[doi:10.11731/j.issn.1673-193x.2015.12.020]
 JIANG Hui-ling,JIANG Zhi-hong.Influence of sodium chloride and silicon dioxide on thermal stability of ammonium persulfate[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(5):129.[doi:10.11731/j.issn.1673-193x.2015.12.020]
[6]蒋新生,翟琰,徐建楠,等.复配超细粉体三相泡沫的制备与稳定性研究[J].中国安全生产科学技术,2016,12(1):122.[doi:10.11731/j.issn.1673-193x.2016.01.023]
 JIANG Xinsheng,ZHAI Yan,XU Jiannan,et al.Research on preparation and stability of three-phase foam incorporated with remixed ultrafine powder[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(5):122.[doi:10.11731/j.issn.1673-193x.2016.01.023]
[7]吕科宗,蒋新生,何标,等.白云母/硅微粉疏水改性对三相泡沫热稳定性的影响[J].中国安全生产科学技术,2017,13(4):153.[doi:10.11731/j.issn.1673-193x.2017.04.025]
 LYU Kezong,JIANG Xinsheng,HE Biao,et al.Influence on thermal stability of three-phase foam by hydrophobic modification of muscovite/silica powder[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(5):153.[doi:10.11731/j.issn.1673-193x.2017.04.025]
[8]王健,武勇,刘小燕,等.景区典型树种的热解特性及动力学研究[J].中国安全生产科学技术,2019,15(2):32.[doi:10.11731/j.issn.1673-193x.2019.02.005]
 WANG Jian,WU Yong,LIU Xiaoyan,et al.Study on pyrolysis characteristics and kinetics of typical tree species in scenic spots[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(5):32.[doi:10.11731/j.issn.1673-193x.2019.02.005]
[9]王飞,刘惠平,刘章蕊,等.微量Fe3+对过氧化氢异丙苯热稳定性影响研究[J].中国安全生产科学技术,2019,15(3):109.[doi:10.11731/j.issn.1673-193x.2019.03.018]
 WANG Fei,LIU Huiping,LIU Zhangrui,et al.Study on influence of trace Fe3+ on thermal stability of cumene hydroperxide[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(5):109.[doi:10.11731/j.issn.1673-193x.2019.03.018]
[10]戴静,陈伟佳,刘犇,等.MPP协同MF@ADP阻燃低密度聚乙烯性能研究*[J].中国安全生产科学技术,2022,18(6):191.[doi:10.11731/j.issn.1673-193x.2022.06.029]
 DAI Jing,CHEN Weijia,LIU Ben,et al.Study on properties of MPP synergistic MF@ADP flame retardant low density polyethylene[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(5):191.[doi:10.11731/j.issn.1673-193x.2022.06.029]
[11]高月,厉鹏,万可风,等.基于QSPR方法的活性化合物热稳定性预测研究[J].中国安全生产科学技术,2022,18(9):13.[doi:10.11731/j.issn.1673-193x.2022.09.002]
 GAO Yue,LI Peng,WAN Kefeng,et al.Study on prediction of thermal stability of reactive chemicals based on quantitative structure-property relationship method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(5):13.[doi:10.11731/j.issn.1673-193x.2022.09.002]

备注/Memo

备注/Memo:
收稿日期: 2019-01-31
作者简介: 高月,硕士,助理工程师,主要从事化学品危险性研究。
更新日期/Last Update: 2019-06-11