|本期目录/Table of Contents|

[1]张青松,刘添添,赵洋.受限空间环境压力对三元锂离子电池热失控影响*[J].中国安全生产科学技术,2021,17(6):36-40.[doi:10.11731/j.issn.1673-193x.2021.06.006]
 ZHANG Qingsong,LIU Tiantian,ZHAO Yang.Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(6):36-40.[doi:10.11731/j.issn.1673-193x.2021.06.006]
点击复制

受限空间环境压力对三元锂离子电池热失控影响*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年6期
页码:
36-40
栏目:
学术论著
出版日期:
2021-06-30

文章信息/Info

Title:
Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery
文章编号:
1673-193X(2021)-06-0036-05
作者:
张青松刘添添赵洋
(中国民航大学 民航热灾害防控与应急重点实验室,天津 300300)
Author(s):
ZHANG Qingsong LIU Tiantian ZHAO Yang
(Key Laboratory of Civil Aviation Thermal Disaster Prevention and Emergency,Civil Aviation University of China,Tianjin 300300,China)
关键词:
环境压力锂离子电池热失控气体分析
Keywords:
environmental pressure lithium ion battery thermal runaway gas analysis
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2021.06.006
文献标志码:
A
摘要:
为研究三元锂离子电池在空运低压环境中的安全性,通过自主设计搭建的封闭式变压实验舱开展相关实验,对不同荷电状态(SOC)下的三元锂离子电池在不同压力环境(101,80,60,40 kPa)下的热失控特性进行研究,采集电池热失控过程中的温度以及实验舱内的压力变化,并对热失控后实验舱内的气体成分进行分析。结果表明:三元锂离子电池热稳定性随着SOC的升高而下降,常压下100%SOC的电池热失控温度可达650.8 ℃,初始环境压力越低,相同SOC的电池热失控最高温度越低。随着环境压力的降低,相同SOC的电池在热失控后会生成更多CO,且电解液占比升高。研究结果可为锂离子电池空运安全性研究提供理论依据。
Abstract:
In order to study the safety of ternary lithium ion battery in the low pressure environment of air transportation,the relevant experiments were carried out by using the self-designed closed variable pressure experiment,and the thermal runaway characteristics of ternary lithium ion battery under different state of charge (SOC) and different pressure environments (101,80,60,40 kPa) were studied.The temperature of battery during the thermal runaway process and the pressure variation in the experimental chamber were collected,and the gas composition in the experimental chamber after thermal runaway was analyzed.The results showed that the thermal stability of ternary lithium ion battery decreased with the increase of SOC,and the thermal runaway temperature of battery with 100% SOC under the normal pressure could reach 650.8 ℃.The lower the initial environmental pressure,the lower the maximum thermal runaway temperature of battery with the same SOC.With the decrease of environmental pressure,the battery with the same SOC would generate more CO after thermal runaway,and the proportion of electrolyte would increase.The results can provide theoretical basis for the research on the air transportation safety of lithium ion battery.

参考文献/References:

[1]DIOUF B,PODE R.Potential of lithium-ion batteries in renewable energy [J].Renewable Energy,2015,76:375-380.
[2]芮新宇,冯旭宁,韩雪冰,等.锂离子电池热失控蔓延问题研究综述[J].电池工业,2020,24(4):193-201,205. RUI Xinyu,FENG Xuning,HAN Xuebing,et al.Review on the thermal runaway propagation of lithium-ion batteries [J].Chinese Battery Industry,2020,24(4):193-201,205.
[3]贺元骅,沈俊杰,王海斌,等.低压环境下新型清洁灭火剂抑灭锂离子电池火试验[J].安全与环境学报,2020,20(4):1340-1346. HE Yuanhua,SHEN Junjie,WANG Haibin,et al.Experimental test for fire suppression of the lithium-ion battery with a novelty clean fireextinguishing agent at the low pressure [J].Journal of Safety and Environment,2020,20(4):1340-1346.
[4]许辉勇,范亚飞,张志萍,等.针刺和挤压作用下动力电池热失控特性与机理综述[J].储能科学与技术,2020,9(4):1113-1126. XU Huiyong,FAN Yafei,ZHANG Zhiping,et al.Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush [J].Energy Storage Science and Technology,2020,9(4):1113-1126.
[5]张青松,赵启臣.过充循环对锂离子电池老化及安全性影响[J].高电压技术,2020,46(10):3390-3397. ZHANG Qingsong,ZHAO Qichen.Effects of overcharge cycling on the aging and safety of lithium ion batteries [J].High Voltage Engineering,2020,46(10):3390-3397.
[6]贺元骅,郭君,王海斌,等.振动环境对锂离子电池热失控危险性的影响[J].科学技术与工程,2020,20(29):12242-12246. HE Yuanhua,GUO Jun,WANG Haibin,et al.Impact of vibration on thermal runaway risk of lithium-ion battery [J].Science Technology and Engineering,2020,20(29):12242-12246.
[7]赖铱麟,杨凯,刘皓,等.锂离子电池安全预警方法综述[J].储能科学与技术,2020,9(6):1926-1932. LAI Yilin,YANG Kai,LIU Hao,et al.Lithium-ion battery safety warning methods review [J].Energy Storage Science and Technology,2020,9(6):1926-1932.
[8]WANG Q S,PING P,ZHAO X J,et al.Thermal runaway caused fire and explosion of lithium ion battery [J].Journal of Power Sources,2012,208:210-224.
[9]REN D S,FENG X N,LU L G,et al.Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions [J].Applied Energy,2019,250:323-332.
[10]张青松,郭超超,秦帅星.锂离子电池燃爆特征及空运安全性研究[J].中国安全科学学报,2016,26(2):50-55. ZHANG Qingsong,GUO Chaochao,QIN Shuaixing.Study on lithium-ion batteries explosive characteristics and aviation transportation safety [J].China Safety Science Journal,2016,26(2):50-55.
[11]郭超超,张青松.锂离子电池热解气体爆炸极限测定及其危险性分析[J].中国安全生产科学技术,2016,12(9):46-49. GUO Chaochao,ZHANG Qingsong.Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis [J].Journal of Safety Science and Technology,2016,12(9):46-49.
[12]PING P,WANG Q S,HUANG P F,et al.Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test [J].Journal of Power Sources,2015,285:80-89.
[13]张青松,曹文杰,罗星娜,等.基于多米诺效应的锂离子电池热释放速率分析方法[J].北京航空航天大学学报,2017,43(5):902-907. ZHANG Qingsong,CAO Wenjie,LUO Xingna,et al.Analysis method of heat release rate of lithium-ion battery based on domino effect [J].Journal of Beijing University of Aeronautics and Astronautics,2017,43(5):902-907.
[14]WANG Q S,MAO B B,STOLIAROV S I,et al.A review of lithium ion battery failure mechanisms and fire prevention strategies [J].Progress in Energy and Combustion Science,2019,73:95-131.
[15]刘全义,韩旭,孙中正,等.不同环境体系下锂离子电池热失控特性实验研究[J].安全,2019,40(4):42-46. LIU Quanyi,HAN Xu,SUN Zhongzheng,et al.Experimental Study on thermal runaway of lithium-ion battery under different environmental systems [J].Safety,2019,40(4):42-46.
[16]张青松,戚瀚鹏,罗星娜,等.电量影响下的锂离子电池热稳定性研究[J].消防科学与技术,2015,34(7):847-849. ZHANG Qingsong,QI Hanpeng,LUO Xingna,et al.A study on thermal stability of lithium-ion battery during air transportation against the influence of power [J].Fire Science and Technology,2015,34(7):847-849.
[17]WANG Q S,SUN J H,YAO X L,et al.Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes [J].Journal of Loss Prevention in the Process Industries,2006,19:561-569.
[18]高飞,杨凯,李大贺,等.锂离子电池组件燃烧性及危险性评价[J].中国安全科学学报,2015,25(8):62-67. GAO Fei,YANG Kai,LI Dahe,et al.Evaluation of combustibility of lithium ion battery components and dangers they involve[J].China Safety Science Journal,2015,25(8):62-67.
[19]王文和,何腾飞,米红甫,等.18650型锂离子电池燃烧特性及火灾危险性评估[J].安全与环境学报,2019,19(3):729-736. WANG Wenhe,HE Tengfei,MI Hongfu,et al.Experimental test for the combustion features of the 18650-type lithium-ion battery and its fire-prone risk assessment [J].Journal of Safety and Environment,2019,19(3):729-736.
[20]PING P,WANG Q S,CHUNG Y,et al.Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions [J].Applied Energy,2017,205:1327-1344.
[21]LI H,DUAN Q L,ZHAO C P,et al.Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode [J].Journal of Hazardous Materials,2019,375:241-254.
[22]FENG X N,FANG M,HE X M,et al.Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].Journal of Power Sources,2014,255:294-301.
[23]LU Y T,CHIANG C C,WU S H,et al.Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter [J].Journal of Thermal Analysis and Calorimetry,2013,114(3):1083-1088.
[24]ZHAO L W,WATANABE I,DOI T,et al.TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries [J].Journal of Power Sources,2006,161(2):1275-1280.
[25]FU Y Y,LU S,LI K Y,et al.An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter [J].Journal of Power Sources,2015,273:216-222.
[26]冯旭宁.车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D].北京:清华大学,2016.
[27]GACHOT G,GRUGEON S,ESHETU G G,et al.Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis [J].Electrochimica Acta,2012,83:402-409.
[28]SPOTNITZ R,FRANKLIN J.Abuse behavior of high-power,lithium-ion cells [J].Journal of Power Sources,2003,113(1):81-100.
[29]GOLUBKOV A W,FUCHS D,WAGNER J,et al.Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes [J].RSC Advances,2014,4(7):3633-3642.

相似文献/References:

[1]郭超超,张青松.锂离子电池热解气体爆炸极限测定及其危险性分析[J].中国安全生产科学技术,2016,12(9):46.[doi:10.11731/j.issn.1673-193x.2016.09.008]
 GUO Chaochao,ZHANG Qingsong.Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):46.[doi:10.11731/j.issn.1673-193x.2016.09.008]
[2]潘鸣宇,及洪泉,邱明泉,等.电动汽车锂离子电池组火灾数值模拟研究[J].中国安全生产科学技术,2020,16(6):104.[doi:10.11731/j.issn.1673-193x.2020.06.017]
 PAN Mingyu,JI Hongquan,QIU Mingquan,et al.Numerical simulation study on fire of lithiumion battery pack in electric vehicle[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(6):104.[doi:10.11731/j.issn.1673-193x.2020.06.017]
[3]陈现涛,张旭,赵一帆,等.不同外热功率下18650锂离子电池热失控特性*[J].中国安全生产科学技术,2021,17(9):139.[doi:10.11731/j.issn.1673-193x.2021.09.022]
 CHEN Xiantao,ZHANG Xu,ZHAO Yifan,et al.Thermal runaway characteristics of 18650 lithium-ion battery under different external thermal powers[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(6):139.[doi:10.11731/j.issn.1673-193x.2021.09.022]
[4]张伟,郝朝龙,刘添添,等.航空压力环境对锂离子电池热解气体爆炸极限影响*[J].中国安全生产科学技术,2022,18(11):155.[doi:10.11731/j.issn.1673-193x.2022.11.022]
 ZHANG Wei,HAO Chaolong,LIU Tiantian,et al.Influence of aviation pressure environment on explosion limit of pyrolysis gas from lithium-ion batteries[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(6):155.[doi:10.11731/j.issn.1673-193x.2022.11.022]
[5]刘一帆,常崇烨,李舒泓,等.全氟己酮微乳液抑制锂离子电池热失控研究*[J].中国安全生产科学技术,2023,19(9):27.[doi:10.11731/j.issn.1673-193x.2023.09.004]
 LIU Yifan,CHANG Chongye,LI Shuhong,et al.Research on inhibition of lithium-ion battery thermal runaway by dodecafluoro-2-methylpentan-3-one microemulsion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(6):27.[doi:10.11731/j.issn.1673-193x.2023.09.004]
[6]张一和,季经纬,刘通,等.基于雾冷系统的锂离子电池热失控抑制研究*[J].中国安全生产科学技术,2023,19(12):109.[doi:10.11731/j.issn.1673-193x.2023.12.014]
 ZHANG Yihe,JI Jingwei,LIU Tong,et al.Study on thermal runaway suppression of li-ion battery with mist cooling system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(6):109.[doi:10.11731/j.issn.1673-193x.2023.12.014]

备注/Memo

备注/Memo:
收稿日期: 2021-03-17
* 基金项目: 国家自然科学基金民航联合基金重点支持项目(U2033204);中国民航大学研究生科研创新项目(10502757)
作者简介: 张青松,博士,教授,主要研究方向为危险品航空运输安全。
更新日期/Last Update: 2021-07-07