|本期目录/Table of Contents|

[1]郭超超,张青松.锂离子电池热解气体爆炸极限测定及其危险性分析[J].中国安全生产科学技术,2016,12(9):46-49.[doi:10.11731/j.issn.1673-193x.2016.09.008]
 GUO Chaochao,ZHANG Qingsong.Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):46-49.[doi:10.11731/j.issn.1673-193x.2016.09.008]
点击复制

锂离子电池热解气体爆炸极限测定及其危险性分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年9期
页码:
46-49
栏目:
学术论著
出版日期:
2016-09-30

文章信息/Info

Title:
Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis
文章编号:
1673-193X(2016)-09-0046-04
作者:
郭超超 张青松
(中国民航大学 经济与管理学院,天津 300300)
Author(s):
GUO Chaochao ZHANG Qingsong
(School of economics and management, Civil Aviation University of China, Tianjin 300300, China)
关键词:
锂离子电池热失控热解气体爆炸极限危险性分析
Keywords:
lithium-ion battery thermal runaway pyrolysis gas explosion limit risk analysis
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2016.09.008
文献标志码:
A
摘要:
为定量研究锂离子电池热失控的危险性,利用锂离子电池在滥用条件下释放气体的种类及体积分数,计算锂离子电池热解气体爆炸极限并研究锂电池荷电状态对热解气体爆炸极限的影响。结果表明:在一定热失控条件下锂离子电池荷电状态为100%时其热解气爆炸下限为6.22%,上限为38.4%,在相同热失控条件下,锂离子电池热解气体的爆炸极限范围随着荷电状态的升高而增大,锂电池的荷电状态对热解气体的爆炸上限影响较大而对爆炸下限影响较小。在相似条件下,锂离子电池热解气体的爆炸极限范围比普通烃类气体大,一旦锂电池发生热失控会对锂离子电池运输造成潜在威胁。
Abstract:
In order to quantitatively study the risk of thermal runaway for lithium-ion battery, the explosion limit of pyrolysis gas was calculated and the influence of State of Charge (SOC) on the explosion limit of pyrolysis gas was studied for lithium-ion battery throught utilizing the type and volume fraction of gas released by lithium-ion battery under the abusive conditions. The results showed that under a certain thermal runaway conditions, when the SOC of lithium-ion battery is 100%, the lower explosion limit of pyrolysis gas is 6.22%, and the upper limit is 38.4%. Under the same thermal runaway conditions, the explosion limit range of pyrolysis gas increases with the increase of SOC, and the SOC of lithium battery has larger influence on the upper explosion limit of pyrolysis gas and less influence on the lower explosion limit. Under similar conditions, the explosion limit range of pyrolysis gas for lithium-ion battery is larger than ordinary hydrocarbon gas. Once the lithium battery occurs thermal runaway, it will cause a potential threat to the transport of lithium-ion battery.

参考文献/References:

[1]Spinner N S, Field C R, Hammond M H, et al. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber[J]. Journal of Power Sources, 2015(279):713-721.
[2]Eshetu G G, Grugeon S, Laruelle S, et al. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries[J]. Physical Chemistry Chemical Physics , 2013(15):9145-9155.
[3]李毅, 于东兴, 张少禹, 等. 锂离子电池火灾危险性研究[J]. 中国安全科学学报, 2012,22(11): 36-41.LI Yi, YU Dongxing , ZHANG Sshaoyu, et al. Research on fire hazard of lithium-ion batteries[J]. China Safety Science Journal, 2012,22(11): 36-41.
[4]Ribiere P,Grugeon S, Morcrette M,et al . Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012,5(1):5271-5280.
[5]Summer S M. Flammability assessment of lithium-ion and lithium-ion polymer batteries cells designed for aircraft power usage[R]. FAA Report, DOT/FAA/AR-09/55, 2010.
[6]黄丽,金明钢,尤金跨,等.聚合物锂离子蓄电池气胀原因的初步探讨[J].电源技术, 2003,196(22): 163-165.HUANG Li, JIN Minggang, YOU Jinkua, et al. Study on gas generation during formation and storage processes for manufacturing polymer Li-ion battery[J]. Chinese Journal of Power Sources, 2003,196(22):163-165.
[7]Shin J S, Han C H, Jung U H, et al. Effect of Li2CO3 additive on gas generation in lithium-ion batteries[J]. Journal of Power Sources, 2002,109(1): 47-52.
[8]Guo H j, Li X h, Zhang X m, et al. Diffusion coefficient of lithium in artificial graphite, mesocarbon microbeads, and disordered carbon[J]. New Carbon Materials, 2007,22(1): 7-10.
[9]陈益奎, 张世杰, 史鹏飞, 等.聚合物锂离子蓄电池化成气体自动消失现象[J].电源技术,2006,18(24): 964-967.CHEN Yikui, ZHANG Shijie, SHI Pengfei, et al. Gas disappearing during polymer lithium battery’s formation[J]. Chinese Journal of Power Sources, 2006,18(24):964-967.
[10]Doyle M, Newman J. Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process[J]. Journal of Applied Electrochemistry, 1997,27(7): 846-856.
[11]Wang Q, Ping P, Zhao X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012(208): 210-224.
[12]田贯三,于畅,李兴泉. 燃气爆炸极限计算方法的研究[J].煤气与热力, 2006,26(3):29-33.TIAN Guansan, YU Chang, LI Xingquan. Study on calculation method of gas explosion limits[J]. GAS &HEAT, 2006,26(3):29-33.
[13]Somandepalli V, Marr K, Horn Q. Quantification of combustion hazards of thermal runaway failures in Lithium-ion battery[J]. SAE International Journal of Alternative Powertrains, 2014,3(1):98-104.
[14]吴建峰,孔庆钫,王保东. 混合气爆炸极限的理论计算方法[J].油气储运, 1994,13(5):10-12.WU Jiangfeng, KONG Qingfang, WANG Baodong. Theoretical calculation methods for the explosion limit of a mixed gas[J]. Oil and Gas Storage and Transportation , 1994,13(5):10-12.
[15]Roth E P, Crafts CC, Doughty D H, et al. Thermal abuse performance of 18650 Li-ion cell[R]. Albuquerque ,SAND2004-0584,2004.

相似文献/References:

[1]孙强,王海斌,谢松,等.低压环境对锂电池热失控释放温度影响[J].中国安全生产科学技术,2019,15(11):78.[doi:10.11731/j.issn.1673-193x.2019.11.012]
 SUN Qiang,WANG Haibin,XIE Song,et al.Influence of low pressure environment on thermal runaway release temperature of lithium battery[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(9):78.[doi:10.11731/j.issn.1673-193x.2019.11.012]
[2]潘鸣宇,及洪泉,邱明泉,等.电动汽车锂离子电池组火灾数值模拟研究[J].中国安全生产科学技术,2020,16(6):104.[doi:10.11731/j.issn.1673-193x.2020.06.017]
 PAN Mingyu,JI Hongquan,QIU Mingquan,et al.Numerical simulation study on fire of lithiumion battery pack in electric vehicle[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(9):104.[doi:10.11731/j.issn.1673-193x.2020.06.017]
[3]张乃平,马永飞,杨孟霖,等.锂电池火灾灭火技术研究综述*[J].中国安全生产科学技术,2022,18(7):47.[doi:10.11731/j.issn.1673-193x.2022.07.007]
 ZHANG Naiping,MA Yongfei,YANG Menglin,et al.Review on fire extinguishing technology research of lithium battery[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):47.[doi:10.11731/j.issn.1673-193x.2022.07.007]
[4]张青松,刘添添,赵洋.受限空间环境压力对三元锂离子电池热失控影响*[J].中国安全生产科学技术,2021,17(6):36.[doi:10.11731/j.issn.1673-193x.2021.06.006]
 ZHANG Qingsong,LIU Tiantian,ZHAO Yang.Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):36.[doi:10.11731/j.issn.1673-193x.2021.06.006]
[5]陈现涛,张旭,赵一帆,等.不同外热功率下18650锂离子电池热失控特性*[J].中国安全生产科学技术,2021,17(9):139.[doi:10.11731/j.issn.1673-193x.2021.09.022]
 CHEN Xiantao,ZHANG Xu,ZHAO Yifan,et al.Thermal runaway characteristics of 18650 lithium-ion battery under different external thermal powers[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):139.[doi:10.11731/j.issn.1673-193x.2021.09.022]
[6]张伟,郝朝龙,刘添添,等.航空压力环境对锂离子电池热解气体爆炸极限影响*[J].中国安全生产科学技术,2022,18(11):155.[doi:10.11731/j.issn.1673-193x.2022.11.022]
 ZHANG Wei,HAO Chaolong,LIU Tiantian,et al.Influence of aviation pressure environment on explosion limit of pyrolysis gas from lithium-ion batteries[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):155.[doi:10.11731/j.issn.1673-193x.2022.11.022]
[7]刘一帆,常崇烨,李舒泓,等.全氟己酮微乳液抑制锂离子电池热失控研究*[J].中国安全生产科学技术,2023,19(9):27.[doi:10.11731/j.issn.1673-193x.2023.09.004]
 LIU Yifan,CHANG Chongye,LI Shuhong,et al.Research on inhibition of lithium-ion battery thermal runaway by dodecafluoro-2-methylpentan-3-one microemulsion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):27.[doi:10.11731/j.issn.1673-193x.2023.09.004]
[8]张一和,季经纬,刘通,等.基于雾冷系统的锂离子电池热失控抑制研究*[J].中国安全生产科学技术,2023,19(12):109.[doi:10.11731/j.issn.1673-193x.2023.12.014]
 ZHANG Yihe,JI Jingwei,LIU Tong,et al.Study on thermal runaway suppression of li-ion battery with mist cooling system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):109.[doi:10.11731/j.issn.1673-193x.2023.12.014]

备注/Memo

备注/Memo:
国家自然科学基金委员会与中国民用航空局联合资助项目(U1333123); 中央高校基本科研业务费资助项目(3122013D016)
更新日期/Last Update: 2016-12-08