|本期目录/Table of Contents|

[1]张伟,郝朝龙,刘添添,等.航空压力环境对锂离子电池热解气体爆炸极限影响*[J].中国安全生产科学技术,2022,18(11):155-162.[doi:10.11731/j.issn.1673-193x.2022.11.022]
 ZHANG Wei,HAO Chaolong,LIU Tiantian,et al.Influence of aviation pressure environment on explosion limit of pyrolysis gas from lithium-ion batteries[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):155-162.[doi:10.11731/j.issn.1673-193x.2022.11.022]
点击复制

航空压力环境对锂离子电池热解气体爆炸极限影响*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年11期
页码:
155-162
栏目:
职业安全卫生管理与技术
出版日期:
2022-11-30

文章信息/Info

Title:
Influence of aviation pressure environment on explosion limit of pyrolysis gas from lithium-ion batteries
文章编号:
1673-193X(2022)-11-0155-08
作者:
张伟郝朝龙刘添添曲奕润张青松陈达
(1.中国民航大学 天津市民航能源环境与绿色发展工程研究中心,天津 300300;
2.中国民航大学 交通科学与工程学院,天津 300300;
3.中国民航大学 安全科学与工程学院,天津 300300)
Author(s):
ZHANG Wei HAO Chaolong LIU Tiantian QU Yirun ZHANG Qingsong CHEN Da
(1.Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development,Civil Aviation University of China,Tianjin 300300,China;
2.College of Traffic Science and Engineering,Civil Aviation University of China,Tianjin 300300,China;
3.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China)
关键词:
拉曼光谱技术锂离子电池热失控航空安全GC-MS
Keywords:
Raman spectroscopy lithium-ion battery thermal runaway aviation safety GC-MS
分类号:
X949
DOI:
10.11731/j.issn.1673-193x.2022.11.022
文献标志码:
A
摘要:
针对航空锂离子电池热失控释放气体安全性研究不足的问题,采用气体拉曼光谱技术、气相色谱仪(Gas Chromatography,GC)和质谱(Mass Spectroscopy,MS)耦合来探究压力和荷电状态(State of Charge,SOC)对锂离子电池早期故障气体类型、气体动态演变及气体潜在危险性等特征的影响规律,同时综合考虑压力、电压和电池温度等多种因素分析锂离子电池热失控危害。研究结果表明:电池SOC越高且环境压力越低,电池越早触发热失控,爆炸极限越宽,其中30 kPa下100%SOC电池热解气体爆炸极限为8.01%~53.35%;SOC和环境压力越高,电池热失控越危险,释放的气体体积越多;CO,CO2,PF3,C2H4及电解液(C3H6O2、C3H6O3、C4H8O2)等气体可作为航空锂离子电池早期故障诊断特征。研究结果对保障锂离子电池在航空领域的安全运输及应用具有重要意义。
Abstract:
In view of the lack of research on the safety of gas released from thermal runaway of aviation lithium-ion batteries,the gas Raman spectroscopy,gas chromatography and mass spectroscopy coupling (GC-MS) were used to explore the influence of pressure and state of charge (SOC) on the early fault gas type,gas dynamic evolution and gas potential risk of lithium-ion batteries.At the same time,various factors such as pressure,voltage and battery temperature were comprehensively considered to analyze the thermal runaway hazards of lithium-ion batteries.The results showed that the higher the battery SOC and the lower the ambient pressure,the earlier the battery triggered thermal runaway,and the wider the explosion limit.The explosion limit of 100% SOC battery pyrolysis gas at 30 kPa was 8.01%~53.35%.The higher the SOC and ambient pressure,the more dangerous the battery thermal runaway,and the more gas volume released.The gases such as CO,CO2,PF3,C2H4 and electrolyte (C3H6O2,C3H6O3,C4H8O2) could be used as early fault diagnosis features of aviation lithium-ion batteries.The results are of great significance to ensure the safe transportation and application of lithium-ion batteries in the aviation field.

参考文献/References:

[1]SAEVARSDOTTIR G,TAO P,STEFANSSON H,et al.Potential use of geothermal energy sources for the production of lithium-ion batteries [J].Renewable Energy,2014,61:17-22.
[2]RICHTER F,VIE P J S,KIELSTRUP S,et al.Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles [J].Electrochim Acta,2017,250:228-237.
[3]CHEN M,HE Y,ZHOU D,et al.Experimental study on the combustion characteristics of primarylithium batteries fire [J].Fire Technology,2016,52:365-385.
[4]KIM T,SONG W T,SON D Y,et al.Lithium-ion batteries:outlook on present,future,and hybridized technologies[J].Journal of Materials Chemistry A,2019,7(7):2942-2964.
[5]郭超超,张青松.锂离子电池热解气体爆炸极限测定及其危险性分析[J].中国安全生产科学技术,2016,12(9):46-49. GUO Chaochao,ZHANG Qingsong.Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J].Journal of Safety Science and Technology,2016,12(9):46-49.
[6]张青松,刘添添,赵洋.受限空间环境压力对三元锂离子电池热失控影响[J].中国安全生产科学技术,2021,17(6):36-40. ZHANG Qingsong,LIU Tiantian,ZHAO Yang.Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery[J].Journal of Safety Science and Technology,2021,17(6):36-40.
[7]SOMANDEPALLI V,MARR K,HORN Q.Quantification of combustion hazards of thermal runaway failures inlithium-ion batteries[J].SAE International Journal of Electrified Vehicles,2014,3(1):98-104.
[8]LARSSON F,ANDERSSON P,BLOMQVIST P,et al.Characteristics of lithium-ion batteries during fire tests[J].Journal of Power Sources,2014,271:414-420.
[9]GOLUBKOV A W,FUCHS D,WAGNER J,et al.Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivine-type cathodes[J].RSC Advances,2014,4:3633-3642.
[10]LARSSON F,ANDERSSON P,BLOMQVIST P,et al.Toxic fluoride gas emissions from lithium-ion battery fires[J].Scientific Reports,2014,8:2045-2322.
[11]CHEN M Y,OUYANG D X,WENG J W,et al.Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge[J].Process Safety and Environmental Protection,2019,130:250-256.
[12]PENG Y,YANG L Z,JU XY,et al.A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J].Journal of Hazardous Materials,2020,381:304-3894.
[13]YUAN L M,DUBANIEWICZ T,ZLOCHOWER I,et al.Experimental study on thermal runaway and vented gases of lithium-ion cells[J].Process Safety and Environmental Protection,2020,144:186-192.
[14]陈新岗,冯煜轩,李昌鑫,等.基于多参量的变压器油中特征气体拉曼光谱分析[J].光谱学与光谱分析,2020,40(6):1916-1922. CHEN Xingang,FENG Yuxuan,LI Changxin,et al.Quantitative analysis of dissolved gases in transformer oil based multi-parameter[J].Spectroscopy and Spectral Analysis,2020,40(6):1916-1922.
[15]万福,杨曼琳,贺鹏,等.变压器油中气体拉曼光谱检测及信号处理方法[J].仪器仪表学报,2016,37(11):2482-2488. WAN Fu,YANG Manlin,HE Peng,et al.Raman spectroscopy detection and signal processing method for the gases in transformer oil[J].Chinese Journal of Scientific Instrument,2016,37(11):2482-2488.
[16]陈伟根,赵立志,彭尚怡,等.激光拉曼光谱应用于变压器油中溶解气体分析[J].中国电机工程学报,2014,34(15):2485-2492. CHEN Weigen,ZHAO Lizhi,PENG Shangyi,et al.Analysis of dissolved gas in transformer oil based on laser Raman spectroscopy [J].Proceedings of the CSEE,2014,34(15):2485-2492.
[17]WANG P Y,CHEN W G,WANG J X,et al.Multigas analysis by cavity-enhanced Raman spectroscopy for power transformer diagnosis[J].Analytical Chemistry,2020,92(8):5969-5977.
[18]FROSCH T,KEINER R,MICHALZIK B,et al.Investigation of gas exchange processes in peat bog ecosystems by means of innovative Raman gas spectroscopy[J].Analytical Chemistry,2013,85(3):1295-1299.
[19]ZHAO C P,WANG T H,HUANG Z,et al.Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test[J].Journal of Energy Storage,2021,38:102915.
[20]KOCH S,FILL A,BIRKE K P.Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J].Journal of Power Sources,2018,398:106-112.
[21]ZHAO C P,SUN J H,WANG Q S.Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter[J].Journal of Energy Storage,2020,28:10123.
[22]CHEN S C,WANG Z R,WANG J H,et al.Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J].Journal of Loss Prevention in the Process Industries,2020,63:950-4230.

相似文献/References:

[1]郭超超,张青松.锂离子电池热解气体爆炸极限测定及其危险性分析[J].中国安全生产科学技术,2016,12(9):46.[doi:10.11731/j.issn.1673-193x.2016.09.008]
 GUO Chaochao,ZHANG Qingsong.Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(11):46.[doi:10.11731/j.issn.1673-193x.2016.09.008]
[2]潘鸣宇,及洪泉,邱明泉,等.电动汽车锂离子电池组火灾数值模拟研究[J].中国安全生产科学技术,2020,16(6):104.[doi:10.11731/j.issn.1673-193x.2020.06.017]
 PAN Mingyu,JI Hongquan,QIU Mingquan,et al.Numerical simulation study on fire of lithiumion battery pack in electric vehicle[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(11):104.[doi:10.11731/j.issn.1673-193x.2020.06.017]
[3]张青松,刘添添,赵洋.受限空间环境压力对三元锂离子电池热失控影响*[J].中国安全生产科学技术,2021,17(6):36.[doi:10.11731/j.issn.1673-193x.2021.06.006]
 ZHANG Qingsong,LIU Tiantian,ZHAO Yang.Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(11):36.[doi:10.11731/j.issn.1673-193x.2021.06.006]
[4]陈现涛,张旭,赵一帆,等.不同外热功率下18650锂离子电池热失控特性*[J].中国安全生产科学技术,2021,17(9):139.[doi:10.11731/j.issn.1673-193x.2021.09.022]
 CHEN Xiantao,ZHANG Xu,ZHAO Yifan,et al.Thermal runaway characteristics of 18650 lithium-ion battery under different external thermal powers[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(11):139.[doi:10.11731/j.issn.1673-193x.2021.09.022]
[5]刘一帆,常崇烨,李舒泓,等.全氟己酮微乳液抑制锂离子电池热失控研究*[J].中国安全生产科学技术,2023,19(9):27.[doi:10.11731/j.issn.1673-193x.2023.09.004]
 LIU Yifan,CHANG Chongye,LI Shuhong,et al.Research on inhibition of lithium-ion battery thermal runaway by dodecafluoro-2-methylpentan-3-one microemulsion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(11):27.[doi:10.11731/j.issn.1673-193x.2023.09.004]
[6]张一和,季经纬,刘通,等.基于雾冷系统的锂离子电池热失控抑制研究*[J].中国安全生产科学技术,2023,19(12):109.[doi:10.11731/j.issn.1673-193x.2023.12.014]
 ZHANG Yihe,JI Jingwei,LIU Tong,et al.Study on thermal runaway suppression of li-ion battery with mist cooling system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(11):109.[doi:10.11731/j.issn.1673-193x.2023.12.014]

备注/Memo

备注/Memo:
收稿日期: 2021-12-13
* 基金项目: 中央高校基本科研业务费中国民航大学专项项目(3122020048);中国民航大学科研启动基金项目(2020KYQD02)
作者简介: 张伟,博士,讲师,主要研究方向为光电检测技术、气体光谱检测。
通信作者: 陈达,博士,教授,主要研究方向为新型光电检测技术。
更新日期/Last Update: 2022-12-11