[1]刘延雷,陈涛,杨志军,等.可变径管道漏磁检测有限元仿真与实验研究[J].中国安全生产科学技术,2016,12(12):42-47.
LIU Yanlei,CHEN Tao,YANG Zhijun,et al.Finite element simulation and experimental research on diameter-variable pipeline magnetic flux leakage testing[J].Journal of Safety Science and Technology,2016,12(12):42-47.
[2]PENG X,ANYAOHA U,LIU Z,et al.Analysis of magnetic-flux leakage (MFL) data for pipeline corrosion assessment[J].IEEE Transactions on Magnetics,2020,56(6):1-15.
[3]MAAZAZ Z,HUBERT O,ZEMMOURI E.Inverse identification of pipeline steel mechanical state by means of coupled magnetic measurements and artificial neural networks[J].NDT & E International,2023,134:102782.
[4]WILLIAM M V A,RAMESH S,CEP R,et al.MFO tunned SVR models for analyzing dimensional characteristics of cracks developed on steam generator tubes[J].Applied Sciences,2022,12(23):12375.
[5]ZHANG H,WANG L,WANG J,et al.A pipeline defect inversion method with erratic MFL signals based on cascading abstract features[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-11.
[6]崔国宁,杨理践,耿浩,等.基于卷积神经网络的管道缺陷量化识别方法[J].仪表技术与传感器,2022(10):99-103.
CUl Guoning,YANG Lijian,GENG Hao,et al.Quantitative identification method of pipeline defects based on convolutional neural network[J].Instrument Technique and Sensor,2022(10):99-103.
[7]卢森骧,神祥凯,张俊楠,等.基于三轴融合的漏磁内检测数据缺陷反演方法研究[J].仪器仪表学报,2021,42(12):245-253.
LU Senxiang,SHEN Xiangkai,ZHANG Junnan,et al.Research on defect inversion method of magnetic flux leakage internal inspection data based on triaxial fusion[J].Chinese Journal of Scientific Instrument,2021,42(12):245-253.
[8]LIU B,LUO N,FENG G.Quantitative study on MFL signal of sipeline composite defect based on improved magnetic charge model[J].Sensors,2021,21(10):3412.
[9]LI H,LIU X,WU B,et al.Accurate 3D reconstruction of complex defects based on combined method of MFL and MFDs[J].Measurement Science and Technology,2021,32(7):075402.
[10]莫丽,雍浩,李长俊,等.油气管道组合缺陷漏磁检测信号数值模拟研究[J].中国安全生产科学技术,2024,20(1):5-10.
MO Li,YONG Hao,Ll Changjun,et al.Numerical simulation study on magnetic flux leakage testing signals of combined defects in oil and gas pipelines[J].Journal of Safety Science and Technology,2024,20(1):5-10.
[11]缪立恒,潘峰,彭丽莎,等.基于漏磁信号深度特性的缺陷深度轮廓迭代优化方法[J].中国电机工程学报,2022,42(8):3077-3086.
MIU Liheng,PAN Feng,PENG Lisha,et al.Iterative optimization method of defect depth profile based on depth characteristics of MFL signal[J].Proceedings of the CSEE,2022,42(8):3077-3086.
[12]HAN W,QUE P.Defect reconstruction of submarine oil pipeline from MFL signals using genetic simulated annealing algorithm[J].Journal of the Japan Petroleum Institute,2006,49(3):145-150.
[13]LI F,FENG J,ZHANG H,et al.Quick reconstruction of arbitrary pipeline defect profiles from MFL measurements employing modified harmony search algorithm[J].IEEE Transactions on Instrumentation and Measurement,2018,67(9):2200-2213.
[14]YANG L J,SUN X,GAO S W.MFL detection defect reconstruction of pipeline based on conjugate gradient methods[C]//Advanced Materials Research.Trans Tech PublicationsLtd,2012,490:1066-1070.
[15]NALLURI M,PENTELA M,ELURI N R.Ascalable tree boosting system:XGBoost[J].International Journal of Research Studies in Science,Engineering and Technology,2020,7(12):36-51.
[16]BENESTY J,CHEN J,HUANG Y,et al.Pearson correlation coefficient[M]//Noise reduction in speech processing.Springer,Berlin,Heidelberg,2009:1-4.
[17]ABUALIGAH L,DIABAT A,MIRJALILI S,et al.The arithmetic optimization algorithm[J].Computer methods in applied mechanics and engineering,2021,376:113609.
[18]俞进,唐建华,神祥凯,等.基于Faster R-CNN的海底管道智能检测方法[J].中国安全科学学报,2023,33(6):80-87.
YU Jin,TANG Jianhua,SHEN Xiangkai,et al.Intelligent detection method for submarine pipelines based on faster R-CNN[J].China Safety Science Journal,2023,33(6):80-87.
[19]董绍华,田中山,赖少川,等.新一代超高清亚毫米级管道内检测技术的研发与应用[J].油气储运,2022,41(1):34-41.
DONG Shaohua,TIAN Zhongshan,LAI Shaochuan,et al.Research and application of a new generation of ultra-high-definition inline detection technology with sub-milimeter precision[J].Oil & Gas Storage and Transportation,2022,41(1):34-41.
[20]郗涛,王通,王莉静,等.基于AOA-LSTM的施工升降机电机轴承剩余寿命预测[J].中国工程机械学报,2023,21(6):600-606.
XI Tao,WANG Tong,WANG Lijing,et al.Prediction of remaining life of rolling bearing based on AOA-LSTM[J].Chinese Journal of Construction Machinery,2023,21(6):600-606.
[1]辜冬梅,姚安林,尹旭东,等.基于层次-模糊评价法的山区油气管道
地质灾害易发性研究[J].中国安全生产科学技术,2012,8(5):52.
GU Dong mei,YAO An lin,YIN Xu dong,et al.Study on occurrence of geological hazards for oil and gas pipelines
through the mountains based on AHPfuzzy evaluation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):52.
[2]郑登锋,蒋金生,王明勇.基于风险矩阵和LOPA的风险评价系统在油气管道
的应用研究[J].中国安全生产科学技术,2012,8(10):76.
ZHENG Deng feng,JIANG Jin sheng,WANG Ming yong.Study on application of risk evaluation system based on risk matrix and LOPA
in oil and gas pipeline system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):76.
[3]王全国,贺帅斌,党文义.油气管道安全预警技术性能评估研究[J].中国安全生产科学技术,2013,9(1):98.
WANG Quan guo,HE Shuai bin,et al.Study on performance evaluation of safety prewarning technology on oil and gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(12):98.
[4]康乐,姚安林,关惠平,等.急倾斜煤层采空区地表移动盆地对油气管道安全影响分析[J].中国安全生产科学技术,2013,9(9):102.[doi:10.11731/j.issn.1673-193x.2013.09.019]
KANG Le,YAO An lin,GUAN Hui pin,et al.Safety influence analysis of subsidence trough on oil & gas pipeline in steeply inclined coalmining area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(12):102.[doi:10.11731/j.issn.1673-193x.2013.09.019]
[5]樊文有,陈 叶,李云海.基于地理信息系统的油气管道安全管理研究[J].中国安全生产科学技术,2009,5(4):175.
FAN Wen you,CHEN Ye,Li Yun hai.Study on safety management system of gasoil pipeline based on GIS[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(12):175.
[6]姜好,张鹏,王大庆.超声波和漏磁检测结果的对比分析[J].中国安全生产科学技术,2014,10(11):128.[doi:10.11731/j.issn.1673-193x.2014.11.022]
JIANG Hao,ZHANG Peng,WANG Da-qing.Comparative analysis on testing results of ultrasonic and magnetic flux leakage[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(12):128.[doi:10.11731/j.issn.1673-193x.2014.11.022]
[7]鲜涛,姚安林,李熠辰,等.基于属性识别理论的油气管道施工质量风险评价[J].中国安全生产科学技术,2015,11(4):95.[doi:10.11731/j.issn.1673-193X.2015.04.015]
XIAN Tao,YAO An-lin,LI Yi-chen,et al.Risk assessment on constructing quality of oil & gas pipeline based on attribute recognition theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(12):95.[doi:10.11731/j.issn.1673-193X.2015.04.015]
[8]王如君.灰色-马尔科夫链模型在埋地油气管道腐蚀预测中的应用[J].中国安全生产科学技术,2015,11(4):102.[doi:10.11731/j.issn.1673-193X.2015.04.016]
WANG Ru-jun,WANG Tian-yu.Application of grey Markov chain model in corrosion forecast of buried oil and gas pipelines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(12):102.[doi:10.11731/j.issn.1673-193X.2015.04.016]
[9]张杰,梁政,韩传军,等.落石冲击作用下架设油气管道响应分析[J].中国安全生产科学技术,2015,11(7):11.[doi:10.11731/j.issn.1673-193x.2015.07.002]
ZHANG Jie,LIANG Zheng,HAN Chuan-jun,et al.Analysis on response of overhead oil and gas pipeline impacted by rock-fall[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(12):11.[doi:10.11731/j.issn.1673-193x.2015.07.002]
[10]冯晓东,张圣柱,王如君,等.加拿大油气管道安全管理体系及其启示[J].中国安全生产科学技术,2016,12(6):180.[doi:10.11731/j.issn.1673-193x.2016.06.032]
FENG Xiaodong,ZHANG Shengzhu,WANG Rujun,et al.Study on safety management system of oil and gas pipeline in Canada and its implications[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(12):180.[doi:10.11731/j.issn.1673-193x.2016.06.032]