|本期目录/Table of Contents|

[1]周督异,王兴隆.动态安全间隔下机场飞行区冲突热点识别*[J].中国安全生产科学技术,2024,20(9):197-207.[doi:10.11731/j.issn.1673-193x.2024.09.024]
 ZHOU Duyi,WANG Xinglong.Identification of conflict hotspots in airport flight area under dynamic safety separation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(9):197-207.[doi:10.11731/j.issn.1673-193x.2024.09.024]
点击复制

动态安全间隔下机场飞行区冲突热点识别*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年9期
页码:
197-207
栏目:
职业安全卫生管理与技术
出版日期:
2024-09-30

文章信息/Info

Title:
Identification of conflict hotspots in airport flight area under dynamic safety separation
文章编号:
1673-193X(2024)-09-0197-08
作者:
周督异王兴隆
(中国民航大学 民航飞联网重点实验室,天津 300300)
Author(s):
ZHOU Duyi WANG Xinglong
(Key Laboratory of Internet of Aircraft for Civil Aviation,Civil Aviation University of China,Tianjin 300300,China)
关键词:
复杂网络动态间隔闭塞安全区2次改进熵权法冲突热点识别
Keywords:
complex network dynamic separation hermetic safety area quadratic improved entropy weight method conflict hotspot identification
分类号:
X949
DOI:
10.11731/j.issn.1673-193x.2024.09.024
文献标志码:
A
摘要:
为精准监视机场飞行区场面运行冲突,提出1种动态安全间隔下的飞行区冲突热点识别方法。首先,将航空器和车辆2种活动目标作为研究对象,根据目标的实时运动速率,建立具有空间闭塞、范围时变特点的安全区模型,从而使目标间实时保持动态安全间隔;然后,从目标间距、运动方向、运动速率3个方面综合开展冲突认定,建立冲突网络表征冲突关系并划设场面冲突区域,选定6个指标评价网络节点,采用二次改进熵权法计算区域熵权,根据冲突占比识别冲突热点;最后,以某大型枢纽机场为实例,采用4种方法对比分析,识别出3个不同冲突程度的热点区域。研究结果表明:闭塞安全区能够使目标间保持动态安全间隔,是准确认定冲突的基础;采用2次改进熵权法计算区域熵权的平均相对误差值相比于传统熵权法和1次改进熵权法分别减少66.5%和53.7%;2次改进熵权法能够更客观精准地识别冲突热点,在一定程度上可以及时监视场面冲突并明确热点位置,保障机场飞行区的运行安全。研究结果可为精准监视机场飞行区场面运行冲突提供新方法,进而保障机场飞行区安全运行。
Abstract:
To accurately monitor the surface operation conflict of airport flight area,a method for identifying the conflict hotspots in the flight area under the dynamic safety separation was proposed.Firstly,taking two activity targets of aircraft and vehicle as the research objects,a safety area model with the characteristics of hermetic space and time-varying range was established according to the real-time movement speed of the targets,so as to maintain the dynamic safety separation between the targets in real-time.Secondly,the conflict identification was carried out comprehensively from three aspects: target separation,movement direction,and movement speed,and a conflict network was established to represent the conflict relationship and delineate the surface conflict areas.Six indexes were selected to evaluate the network nodes,then the quadratic improved entropy weight method was used to calculate the entropy weight of the area,and the conflict hotspots were identified according to the proportion of conflicts.Finally,taking a large hub airport as an example,four methods were compared and analyzed to identify three hotspot areas with different conflict degrees.Among them,the average relative error value of entropy weight of the area was calculated by using the quadratic improved entropy weight method,which decreased by 66.5% and 53.7% respectively compared to the traditional entropy weight method and the primary improved entropy weight method.The results show that the hermetic safety area can make the targets maintain dynamic safety separation,which is the basis for accurately identifying the conflict.The quadratic improved entropy weight method can objectively and accurately identify the conflict hotspots,timely monitor the surface conflict,and ensure the operation safety of the airport flight area.The research results can provide a new method for accurately monitoring the surface operation conflicts of the airport flight area,thus ensuring the operation of airport flight area.

参考文献/References:

[1]International Civil Aviation Organization.Air Traffic Management:Doc4444-ATM/501[S].Montreal:International Civil Aviation Organization,2007.
[2]LANDRY S J,CHEN X W,NOF S Y.A decision support methodology for dynamic taxiway and runway conflict prevention[J].Decision Support Systems,2013,55(1):165-174.
[3]ALOMAR I,TOLUJEVS J.Optimization of ground vehicles movement on the aerodrome[J].Transportation Research Procedia,2017,24:58-64.
[4]ZHANG M,HUANG Q W,LIU S H,et al.Multi-objective optimization of aircraft taxiing on the airport surface with consideration to taxiing conflicts and the airport environment[J].Sustainability,2019,11(23):6728.
[5]HERNNDEZ-ROMERO E,VALENZUELA A,RIVAS D.Probabilisticmulti-aircraft conflict detection and resolution considering wind forecast uncertainty[J].Aerospace Science and Technology,2020,105:105973.
[6]SHVETSOV A V.Analysis of accidents resulting from the interaction of air and ground vehicles at airports[J].Transportation Research Procedia,2021,59:21-28.
[7]DENG W,ZHANG L,ZHOU X,et al.Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem[J].Information Sciences,2022,612:576-593.
[8]ZHANG X G,ZHONG S Q,MAHADEVAN S.Airport surface movement prediction and safety assessment with spatial-temporal graph convolutional neural network[J].Transportation Research Part C:Emerging Technologies,2022,144:103873.
[9]王兴隆,周督异.基于复杂网络的飞行区冲突关键栅格区识别[J].中国安全生产科学技术,2023,19(8):32-38. WANG Xinglong,ZHOU Duyi.Identification of critical grid areas in flight area conflicts based on complex network[J].Journal of Safety Science and Technology,2023,19(8):32-38.
[10]吴维,吴泽萱,王兴隆.机场飞行区多层异质链序风险传播模型研究[J].北京航空航天大学学报,2024,50(7):2225-2236. WU Wei,WU Zexuan,WANG Xinglong.Research on multi-layer heterogeneous chain sequence risk propagation model in airport movement area[J].Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2225-2236.
[11]LIAN G,WANG Y S,LI W Y,et al.Aircraft taxiing conflict avoidance approach based on gaussian spatial-temporal prediction[J].Physica A:Statistical Mechanics and Its Applications,2023,624:128915.
[12]余洲,张兆宁.基于模糊数的机场滑行冲突预测方法[J].中国安全科学学报,2023,33(3):90-95. YU Zhou,ZHANG Zhaoning.A prediction method of airport taxiing conflicts based on fuzzy numbers [J].China Safety Science Journal,2023,33(3):90-95.
[13]KORKMAZ H,FILAZOGLU E,ATES S S.Enhancing airport apron safety through intelligent transportation systems:proposed FEDA model[J].Safety Science,2023,164:106184.
[14]CAFIERI S,CONN A R,MONGEAU M.Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations[J].European Journal of Operational Research,2023,310(2):670-679.
[15]谢华,苏方正,尹嘉男,等.复杂低空无人机飞行冲突网络建模与精细管理[J].航空学报,2023,44(18):328226-328226. XIE Hua,SU Fangzheng,YIN Jia’nan,et al.Network modeling and refined management of UAV flight conflicts incomplex low altitude airspace[J].Acta Aeronautica et Astronautica Sinica,2023,44(18):328226-328226.

相似文献/References:

[1]冉连月,吴贤国,刘洋,等.武汉市轨道交通线网应急救援站选址研究[J].中国安全生产科学技术,2018,14(4):63.[doi:10.11731/j.issn.1673-193x.2018.04.010]
 RAN Lianyue,WU Xianguo,LIU Yang,et al.Study on site selection of emergency rescue stations in Wuhan rail transit network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(9):63.[doi:10.11731/j.issn.1673-193x.2018.04.010]
[2]宋英华,张小莹,吕伟.城镇-森林交界域火灾灾害链网络模型构建及风险分析[J].中国安全生产科学技术,2020,16(5):122.[doi:10.11731/j.issn.1673-193x.2020.05.019]
 SONG Yinghua,ZHANG Xiaoying,LYU Wei.Construction of disaster chain network model and risk analysis on wildlandurban interface fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(9):122.[doi:10.11731/j.issn.1673-193x.2020.05.019]
[3]刘海云,韩晓松,翟振岗,等.基于复杂网络的燃气管线破裂灾害链风险分析*[J].中国安全生产科学技术,2020,16(9):37.[doi:10.11731/j.issn.1673-193x.2020.09.006]
 LIU Haiyun,HAN Xiaosong,ZHAI Zhengang,et al.Risk analysis on rupture disaster chain of gas pipeline based on complex network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(9):37.[doi:10.11731/j.issn.1673-193x.2020.09.006]
[4]赵士翔,胡春春,马兰.危化品事故情景推演网络构建及关键节点分析*[J].中国安全生产科学技术,2022,18(2):36.[doi:10.11731/j.issn.1673-193x.2022.02.005]
 ZHAO Shixiang,HU Chunchun,MA Lan.Construction of scenario deduction network for hazardous chemical accidents and analysis of key nodes[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):36.[doi:10.11731/j.issn.1673-193x.2022.02.005]
[5]程明,李忆轩.终端区飞行冲突事件情景演变网络构建研究 *[J].中国安全生产科学技术,2022,18(2):50.[doi:10.11731/j.issn.1673-193x.2022.02.007]
 CHENG Ming,LI Yixuan.Research on scenario evolution network construction of flight conflict incident in terminal area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):50.[doi:10.11731/j.issn.1673-193x.2022.02.007]
[6]陈志远,王铁骊.基于文本挖掘和复杂网络的事故致因重要度评估方法*——以房屋市政较大以上事故为例[J].中国安全生产科学技术,2022,18(4):224.[doi:10.11731/j.issn.1673-193x.2022.04.032]
 CHEN Zhiyuan,WANG Tieli.Evaluation method of accident causes importance based on text mining and complex network:a case study of larger and above accidents in housing and municipal engineering[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):224.[doi:10.11731/j.issn.1673-193x.2022.04.032]
[7]王兴隆,尹昊.基于介度熵的机场飞行区关键冲突点识别*[J].中国安全生产科学技术,2022,18(9):236.[doi:10.11731/j.issn.1673-193x.2022.09.034]
 WANG Xinglong,YIN Hao.Identification of key conflict points in airport airfield area based on betweenness and degree entropy[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):236.[doi:10.11731/j.issn.1673-193x.2022.09.034]
[8]程明,梅傲然.基于关联规则的跑道着陆事件演化网络构建研究*[J].中国安全生产科学技术,2022,18(12):203.[doi:10.11731/j.issn.1673-193x.2022.12.029]
 CHENG Ming,MEI Aoran.Research on construction of evolution network for runway landing event based on association rules[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(9):203.[doi:10.11731/j.issn.1673-193x.2022.12.029]
[9]王威,李瑞,郭小东,等.城市消防救援网络形态特征、抗毁性与鲁棒性研究*[J].中国安全生产科学技术,2023,19(1):28.[doi:10.11731/j.issn.1673-193x.2023.01.004]
 WANG Wei,LI Rui,GUO Xiaodong,et al.Study on morphological characteristics,damage resistance and robustness of urban fire rescue network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):28.[doi:10.11731/j.issn.1673-193x.2023.01.004]
[10]戴剑勇,刘朝,毛佳志,等.基于SEIR的应急物流网络风险传播动力学分析*[J].中国安全生产科学技术,2023,19(5):37.[doi:10.11731/j.issn.1673-193x.2023.05.005]
 DAI Jianyong,LIU Chao,MAO Jiazhi,et al.Dynamic analysis of risk propagation in emergency logistics network based on SEIR[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(9):37.[doi:10.11731/j.issn.1673-193x.2023.05.005]

备注/Memo

备注/Memo:
收稿日期: 2024-05-12
* 基金项目: 国家自然科学基金项目(62173332,U2133207);天津市科技计划项目(21JCYBJCO0700);中国民航大学研究生科研创新项目(2023YJSKC030010)
作者简介: 周督异,硕士研究生,主要研究方向为飞行区运行冲突风险识别。
通信作者: 王兴隆,硕士,研究员,主要研究方向为飞行区风险态势感知。
更新日期/Last Update: 2024-10-08