|本期目录/Table of Contents|

[1]张丽,苏怀,范霖,等.基于时序片段的油气管道运行工况识别方法*[J].中国安全生产科学技术,2022,18(11):99-104.[doi:10.11731/j.issn.1673-193x.2022.11.014]
 ZHANG Li,SU Huai,FAN Lin,et al.Recognition method on operating conditions of oil and gas pipelines based on sequential segment[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(11):99-104.[doi:10.11731/j.issn.1673-193x.2022.11.014]
点击复制

基于时序片段的油气管道运行工况识别方法*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年11期
页码:
99-104
栏目:
职业安全卫生管理与技术
出版日期:
2022-11-30

文章信息/Info

Title:
Recognition method on operating conditions of oil and gas pipelines based on sequential segment
文章编号:
1673-193X(2022)-11-0099-06
作者:
张丽苏怀范霖江璐鑫张劲军
(1.中国石油大学(北京) 油气管道输送安全国家工程实验室,北京 102249;
2.中国石油大学(北京) 城市油气输配技术北京市重点实验室,北京 102249)
Author(s):
ZHANG Li SU Huai FAN Lin JIANG Luxin ZHANG Jinjun
(1.National Engineering Laboratory for Oil and Gas Pipeline Transportation Safety,China University of Petroleum,Beijing 102249,China;
2.Beijing Key Laboratory of Urban Oil and Gas Transmission and Distribution Technology,China University of Petroleum,Beijing 102249,China)
关键词:
油气管道时序片段工况识别智能化
Keywords:
oil and gas pipeline sequential segment operating condition recognition intelligence
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2022.11.014
文献标志码:
A
摘要:
为准确识别管道系统运行工况,提高对油气管道突发事故的响应速度,综合提升管网安全管理水平,提出1种基于时序片段的油气管道运行工况识别方法。首先,构建基于概率分布的状态变化识别模型,提取油气管道中不同运行状态点;其次,建立基于时间序列片段的工况识别模型,快速识别不同时间长度内油气管道运行工况;最后,以国内某成品油管道为例进行方法验证。研究结果表明:该方法可有效识别成品油管道阀门开关状态、泵异常停机和阀门内漏3种运行工况。对比传统的识别方法,该方法可降低状态变化点的漏报率,提升管道运行工况识别的准确率。研究结果可为油气管道系统运行工况识别提供新的借鉴方法。
Abstract:
In order to accurately identify the operating conditions of pipeline system,improve the response speed to unexpected accidents,and comprehensively enhance the safety management level of pipeline network,a recognition method on the operating conditions of oil and gas pipelines based on the sequential segment was proposed.Firstly,a recognition model of state change based on probability distribution was constructed to extract the points with different operating states in the oil and gas pipeline.Then,a condition recognition method based on the sequential segment was established,which could quickly identify the operating conditions of oil and gas pipeline in different time intervals.Finally,the proposed method was validated by taking a domestic product oil pipeline as an example.The results showed that the method could effectively identify the operating conditions of oil and gas pipeline such as the valve opening state,valve internal leakage and pump abnormal shutdown.Compared with the traditional recognition methods,the recognition method of state change point had lower missing report rate,and the accuracy of condition recognition method based on the sequential segment was improved.The results can provide a new methodological reference for the recognition of operating conditions of the oil and gas pipeline systems.

参考文献/References:

[1]于涛,刘丽君,陈泓君,等.长输油气管道大数据挖掘与应用[J].物联网学报,2020,4(3):112-119. YU Tao,LIU Lijun,CHEN Hongjun,et al.Big data mining and application of long-distance oil and gas pipeline [J].Chinese Journal on Internet of Things,2020,4(3):112-119.
[2]王义明.油气管道泄漏的自动检测技术及其实际应用[J].中国石油和化工标准与质量,2016(11):29-30. WANG Yiming.Automatic detection technology for oil and gas pipeline leaks and practical application [J].China Petroleum and Chemical Standard and Quality,2016(11):29-30.
[3]刘维国,李朦,汪涛,等.浙江中控SCADA系统在成品油长输管道上的应用[J].自动化与仪表,2021,36(4):104-108. LIU Weiguo,LI Meng,WANG Tao,et al.Application of SCADA system of SUPCON in long-distance product oil pipeline [J].Automation & Instrumentation,2021,36(4):104-108.
[4]刘维国,汪涛,郑家宜,等.成品油管道智能报警管理系统开发应用[J].电工技术,2021(4):136-138. LIU Weiguo,WANG Tao,ZHENG Jiayi,et al.Development and application of intelligent alarm management system for product oil pipeline [J].Electric Engineering,2021(4):136-138.
[5]郎宪明.基于特征提取与信息融合的管道泄漏检测与定位研究[D].西安:西北工业大学,2018.
[6]梁凤勤,高媛,刘功银,等.基于AutoEncoder的油气管道控制系统异常状态监测方法[J].电子测量与仪器学报,2019,33(12):10-18. LIANG Fengqin,GAO Yuan,LIU Gongyin,et al.Pipeline control system fault detection method based on auto-encoder [J].Journal of Electronic Measurement and Instrumentation,2019,33(12):10-18.
[7]宁方立,韩鹏程,段爽,等.基于改进CNN的阀门泄漏超声信号识别方法[J].北京邮电大学学报,2020,43(3):38-44. NING Fangli,HAN Pengcheng,DUAN Shuang,et al.Identification method of valve leakage ultrasonic signal based on improved CNN [J].Journal of Beijing University of Posts and Telecommunications,2020,43(3):38-44.
[8]秦程.基于负压波与流量平衡法的管道泄漏监测系统研究[D].大连:大连理工大学,2021.
[9]许永勃.输油管道负压波法泄漏检测技术研究[D].西安:西安石油大学,2018.
[10]张鑫,艾信,任晓峰,等.负压波法管线泄漏检测系统在长庆油田的应用改进研究[J].油气田地面工程,2020,39(10):98-102. ZHANG Xin,AI Xin,REN Xiaofeng,et al.Study of application improvement on negative pressure wave pipeline leakage detection system in Changqing oil field [J].Oil-Gas Field Surface Engineering,2020,39(10):98-102.
[11]LIU L,PENG Y X,WANG S,et al.Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors[J].Information Sciences,2016,340:41-57.
[12]LI G L,YAN W H,WU Z D.Discovering shapelets with key points in time series classification[J].Expert Systems with Applications,2019,132:76-86.
[13]SUN X H,SUN B J,ZHANG S,et al.A new pattern recognition model for gas kick diagnosis in deepwater drilling[J].Journal of Petroleum Science and Engineering,2018,167:418-425.
[14]KARCZMAREK P,KIERSZTYN A,PEDRYCZ W,et al.K-Means-based isolation forest [J].Knowledge-based Systems,2020,195:105659.
[15]EI HAFYANI H E,ZEITOUNI K,TAHER Y,et al.Leveraging change point detection for activity transition mining in the context of environmental crowdsensing[C]//The 9th SIGKDD International Workshop on Urban Computing 2020 (UrbComp’20).UrbComp,2020.
[16]YE L,KEOGH E J.Time series shapelets:a new primitive for data mining [C]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining.ACM,2009:947-956.
[17]ZUO J W,ZEITOUNI K,TAHER Y.Incremental and Adaptive Feature Exploration over Time Series Stream[C]//2019 IEEE International Conference on Big Data (Big Data).IEEE,2019:593-602.
[18]YEH C M,ZHU Y,ULANOVA L,et al.Matrix profile I:all pairs similarity joins for time series:a unifying view that includes motifs,discords and shapelets[C]//2016 IEEE 16th international conference on data mining (ICDM).IEEE,2016:1317-1322.
[19]LI H L.Asynchronism-based principal component analysis for time series data mining[J]. Expert systems with applications,2014,41(6):2842-2850.

相似文献/References:

[1]辜冬梅,姚安林,尹旭东,等.基于层次-模糊评价法的山区油气管道 地质灾害易发性研究[J].中国安全生产科学技术,2012,8(5):52.
 GU Dong mei,YAO An lin,YIN Xu dong,et al.Study on occurrence of geological hazards for oil and gas pipelines through the mountains based on AHPfuzzy evaluation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(11):52.
[2]郑登锋,蒋金生,王明勇.基于风险矩阵和LOPA的风险评价系统在油气管道 的应用研究[J].中国安全生产科学技术,2012,8(10):76.
 ZHENG Deng feng,JIANG Jin sheng,WANG Ming yong.Study on application of risk evaluation system based on risk matrix and LOPA in oil and gas pipeline system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(11):76.
[3]王全国,贺帅斌,党文义.油气管道安全预警技术性能评估研究[J].中国安全生产科学技术,2013,9(1):98.
 WANG Quan guo,HE Shuai bin,et al.Study on performance evaluation of safety prewarning technology on oil and gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(11):98.
[4]康乐,姚安林,关惠平,等.急倾斜煤层采空区地表移动盆地对油气管道安全影响分析[J].中国安全生产科学技术,2013,9(9):102.[doi:10.11731/j.issn.1673-193x.2013.09.019]
 KANG Le,YAO An lin,GUAN Hui pin,et al.Safety influence analysis of subsidence trough on oil & gas pipeline in steeply inclined coalmining area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(11):102.[doi:10.11731/j.issn.1673-193x.2013.09.019]
[5]樊文有,陈 叶,李云海.基于地理信息系统的油气管道安全管理研究[J].中国安全生产科学技术,2009,5(4):175.
 FAN Wen you,CHEN Ye,Li Yun hai.Study on safety management system of gasoil pipeline based on GIS[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(11):175.
[6]鲜涛,姚安林,李熠辰,等.基于属性识别理论的油气管道施工质量风险评价[J].中国安全生产科学技术,2015,11(4):95.[doi:10.11731/j.issn.1673-193X.2015.04.015]
 XIAN Tao,YAO An-lin,LI Yi-chen,et al.Risk assessment on constructing quality of oil & gas pipeline based on attribute recognition theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(11):95.[doi:10.11731/j.issn.1673-193X.2015.04.015]
[7]王如君.灰色-马尔科夫链模型在埋地油气管道腐蚀预测中的应用[J].中国安全生产科学技术,2015,11(4):102.[doi:10.11731/j.issn.1673-193X.2015.04.016]
 WANG Ru-jun,WANG Tian-yu.Application of grey Markov chain model in corrosion forecast of buried oil and gas pipelines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(11):102.[doi:10.11731/j.issn.1673-193X.2015.04.016]
[8]张杰,梁政,韩传军,等.落石冲击作用下架设油气管道响应分析[J].中国安全生产科学技术,2015,11(7):11.[doi:10.11731/j.issn.1673-193x.2015.07.002]
 ZHANG Jie,LIANG Zheng,HAN Chuan-jun,et al.Analysis on response of overhead oil and gas pipeline impacted by rock-fall[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(11):11.[doi:10.11731/j.issn.1673-193x.2015.07.002]
[9]冯晓东,张圣柱,王如君,等.加拿大油气管道安全管理体系及其启示[J].中国安全生产科学技术,2016,12(6):180.[doi:10.11731/j.issn.1673-193x.2016.06.032]
 FENG Xiaodong,ZHANG Shengzhu,WANG Rujun,et al.Study on safety management system of oil and gas pipeline in Canada and its implications[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(11):180.[doi:10.11731/j.issn.1673-193x.2016.06.032]
[10]张圣柱,王如君,多英全,等.国家油气管道地图系统架构探讨[J].中国安全生产科学技术,2016,12(11):164.[doi:10.11731/j.issn.1673-193x.2016.11.028]
 ZHANG Shengzhu,WANG Rujun,DUO Yingquan,et al.Discussion on architecture of national oil and gas pipeline mapping system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(11):164.[doi:10.11731/j.issn.1673-193x.2016.11.028]

备注/Memo

备注/Memo:
收稿日期: 2022-06-01
* 基金项目: 国家自然科学基金项目(51904316);中国石油大学(北京)科学基金项目(2462021YJRC013,2462020YXZZ045)
作者简介: 张丽,博士研究生,主要研究方向为油气系统大数据与智能化的研究。
通信作者: 苏怀,博士,副教授,主要研究方向为复杂油气管网可靠性评价及其智能化技术。
更新日期/Last Update: 2022-12-11