|本期目录/Table of Contents|

[1]张印,赵东风,刘义.基于FLACS的CH4/CO2/air混合气爆炸参数分析[J].中国安全生产科学技术,2016,12(9):36-40.[doi:10.11731/j.issn.1673-193x.2016.09.006]
 ZHANG Yin,ZHAO Dongfeng,LIU Yi.Analysis on explosion parameters of CH4/CO2/air mixed gas based on FLACS[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(9):36-40.[doi:10.11731/j.issn.1673-193x.2016.09.006]
点击复制

基于FLACS的CH4/CO2/air混合气爆炸参数分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年9期
页码:
36-40
栏目:
学术论著
出版日期:
2016-09-30

文章信息/Info

Title:
Analysis on explosion parameters of CH4/CO2/air mixed gas based on FLACS
文章编号:
1673-193X(2016)-09-0036-05
作者:
张印1赵东风2刘义2
(1.中国石油大学(华东) 机电工程学院,山东 青岛 266580;2.中国石油大学(华东) 化学工程学院,山东 青岛 266580)
Author(s):
ZHANG Yin1 ZHAO Dongfeng2 LIU Yi2
(1. College of Mechanical and Electrical Engineering, China University of Petroleum, Qingdao Shandong 266580, China;2. College of Chemical Engineering, China University of Petroleum, Qingdao Shandong 266580, China)
关键词:
FLACS爆炸温度最大爆炸压力混合气甲烷
Keywords:
FLACS explosion temperature maximum explosion pressure mixed gas methane
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2016.09.006
文献标志码:
A
摘要:
利用FLACS软件分析初始压力、初始温度对CH4/CO2/air混合气的爆炸温度、最大爆炸压力的影响;并与计算值对比。结果表明:①初始压力对爆炸温度、爆炸前后压力比影响可以忽略。常温变压条件下二氧化碳浓度增加,爆炸温度与爆炸前后压力比基本呈线性降低。常压变温条件较复杂,二氧化碳浓度升高爆炸温度降低;初始温度对低浓度(<15%)二氧化碳混合气爆炸温度几乎没有影响,而高浓度(>15%)二氧化碳混合气爆炸温度随初始温度增加而升高;最大爆炸压力随二氧化碳浓度以及温度升高而降低。②在设定条件下,低浓度(5%~10%)二氧化碳混合气爆炸温度计算值与模拟值相对误差小于5.5%,吻合较好;最大爆炸压力计算值与模拟值相对误差在6.5%~10.5%之间。
Abstract:
FLACS software was used to analyze the influence of initial pressure and initial temperature on the explosion temperature and the maximum explosion pressure of CH4/CO2/air mixed gas, and the results were compared with the calculation values. It showed that the influence of initial pressure on the explosion temperature and the rate of pressure before and after explosion can be ignored. Under the conditions of normal temperature and different pressure, with the increasing concentration of carbon dioxide, the explosion temperature and the rate of pressure before and after explosion reduce linearly. The situation under the conditions of normal pressure and different temperature is more complex, with the increasing concentration of carbon dioxide, the explosion temperature reduces. The initial temperature has almost no effect on the explosion temperature of mixed gas with low concentration (less than or equal to 15%) of carbon dioxide, while the explosion temperature of mixed gas with high concentration (higher than 15%) of carbon dioxide increases with the increase of initial temperature. The maximum explosion pressure decreases with the increase of carbon dioxide concentration and temperature. Under the setting conditions, the relative error of calculation value and simulation value for the explosion temperature of mixed gas with low concentration of carbon dioxide is less than 5.5%, which is in good agreement. The relative error of calculation value and simulation value for the maximum explosion pressure is between 6.5%-10.5%.

参考文献/References:

[1]孙扬, 杜志敏, 孙雷,等. CO2的埋存与提高天然气采收率的相行为[J]. 天然气工业, 2012, 32(5):39-42.SUN Yang, DU Zhimin,SUN Lei, et al. Phase behavior of CO2 sequestration and enhanced natural gas recovery [J]. Natural Gas Industry, 2012, 32(5):39-42.
[2]钱新明, 郑远攀, 张应安,等. 含CO2天然气的可燃极限与燃爆压力[J]. 爆炸与冲击, 2010, 30(5):523-528.QIAN Mingxin, ZHENG Yuanpan, ZHANG Yingan, et al. Flammable limits and combustion pressure of natural gas containing carbon dioxide [J]. Explosion and Shock Waves, 2010, 30(5):523-528.
[3]刘振翼, 张应安, 郑远攀,等. 含CO2天然气井井喷流场特征[J]. 石油勘探与开发, 2011, 38(1):90-96.LIU Zhenyi, ZHANG Yingan, ZHENG Yuanpan, et al. Flow fields in the blowout of natural gas wells containing carbon dioxide [J]. Petroleum Exploration and Development, 2011, 38(1):90-96.
[4]任韶然, 李海奎, 李磊兵,等. 惰性及特种可燃气体对甲烷爆炸特性的影响实验及分析[J]. 天然气工业, 2013, 33(10):110-115.REN Shanran, LI Haikui, LI Leibing, et al. An experimental study of effects of inert and special flammable gases on methane’s explosion characteristics[J]. Natural Gas Industry, 2013, 33(10):110-115.
[5]李成兵. N2/CO2/H2O抑制甲烷爆炸化学动力学机理分析[J]. 中国安全科学学报, 2011, 20(8):88-92.LI Chengbing. Chemical kinetic mechanism analysis of N2/CO2/H2O suppressing methane explosion [J]. China Safety Science Journal, 2011, 20(8):88-92.
[6]李成兵, 吴国栋, 周宁,等. N2/CO2/H2O抑制甲烷燃烧数值分析[J]. 中国科学技术大学学报, 2010, 40(3):288-293.LI Chengbing, WU Guodong, ZHOU Ning, et al. Numerical analysis of methane combustion suppression by N2/CO2/H2O [J]. Journal of University of Science and Technology of China, 2010, 40(3):288-293.
[7]贾宝山, 温海燕, 梁运涛,等. 煤矿巷道内N2及CO2抑制瓦斯爆炸的机理特性[J]. 煤炭学报, 2013, 38(3):361-366.JIA Baoshan, WEN Haiyan, LIANG Yuntao, et al. Mechanism characteristics of CO2 and N2 inhibiting methane explosions in coal mine roadways[J]. Journal of China Coal Society, 2013, 38(3):361-366.
[8]黄子超, 司荣军, 李润之. 不同环境温度下瓦斯爆炸特性的数值模拟研究[J]. 矿业安全与环保, 2012, 39(5):29-31.HUANG Zichao, SI Rongjun, Li Runzhi. Numerical simulation of gas explosion characteristics under different ambient temperature[J]. Mining Safety & Environmental Protection, 2012, 39(5):29-31.
[9]Dupont L,Accorsi A. Explosion characteristics of synthesised biogas at various temperatures[J]. Journal of Hazardous Materials,2006,136( 3) : 520-525..
[10]Tang C, Zhang S, Si Z, et al. High methane natural gas/air explosion characteristics in confined vessel[J]. Journal of Hazardous Materials, 2014, 278:520-528.
[11]司荣军. 高压环境条件下煤矿瓦斯爆炸特性数值模拟[J]. 煤矿安全, 2014, 45(7):1-4.SI Rongjun. Numerical simulation of gas explosion characteristics under high pressure environment[J]. Safety in Coal Mines, 2014, 45(7):1-4.
[12]王磊, 刘丹, 李润之. 密闭容器复杂环境瓦斯爆炸压力特性研究[J]. 煤炭技术, 2014, 33(5):26-27.WANG Lei, LIU Dan, LI Runzhi. Experiment research on methane-air mixture explosion pressure characterize in closed vessel [J]. Coal Technology, 2014, 33(5):26-27.
[13]罗振敏, 王涛, 程方明,等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟[J]. 爆炸与冲击, 2015, 35(3):393-400.LUO Zhenmin, WANG Tao, CHENG Fangming, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. 爆炸与冲击, 2015, 35(3):393-400.
[14]王学岐, 韩兆辉, 宋丹青. 基于CFD的液化气罐区泄漏爆炸事故后果模拟[J]. 中国安全生产科学技术, 2013, 9(2):64-68.WANG Xueqi, HAN Zhaohui, SONG Danqing. Simulation on leakage explosion consequence of LPG tank farms based on CFD[J]. Journal of Safety Science and Technology, 2013, 9(2):64-68.
[15]袁纪武, 赵祥迪, 姜春明,等. 煤气化装置泄漏爆炸事故伤害作用区域研究[J]. 中国安全生产科学技术, 2012, 8(10):32-37.YUAN Jiwu, ZHAO Xiangdi, JIANG Chunming, et al. Study on impact zone for dispersion and explosion accident in coal gasification factory [J]. Journal of Safety Science and Technology, 2012, 8(10):32-37.

相似文献/References:

[1]凌晓东 ,党文义 ,于安峰 ,等.环己烷泄漏事故模拟与风险控制措施研究[J].中国安全生产科学技术,2013,9(8):33.[doi:10.11731/j.issn.1673-193x.2013.08.006]
 LING Xiao dong,DANG Wen yi,YU An feng,et al.Research on the simulation of cyclohexane leakage accidents and development of risk control measures[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(9):33.[doi:10.11731/j.issn.1673-193x.2013.08.006]
[2]张杰东,于安峰,党文义,等.封闭式地面火炬爆炸事故后果模拟研究[J].中国安全生产科学技术,2013,9(10):49.[doi:10.11731/j.issn.1673-193x.2013.10.009]
 ZHANG Jie dong,YU An feng,DANG Wen yi,et al.Simulation on explosion of flammable gas in enclosed groundflare[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(9):49.[doi:10.11731/j.issn.1673-193x.2013.10.009]
[3]林小侦,于光认,魏利军,等.液化天然气在水面地面扩散对比研究[J].中国安全生产科学技术,2014,10(8):86.[doi:10.11731/j.issn.1673-193x.2014.08.015]
 LIN Xiao-zhen,YU Guang-ren,WEI Li-jun,et al.Comparative study of LNG dispersion on water and ground[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):86.[doi:10.11731/j.issn.1673-193x.2014.08.015]
[4]杨冬冬,陈国明,师吉浩.海洋平台井喷含硫天然气扩散危险区域研究[J].中国安全生产科学技术,2017,13(8):114.[doi:10.11731/j.issn.1673-193x.2017.08.018]
 YANG Dongdong,CHEN Guoming,SHI Jihao.Research on dangerous region of H2S-containing natural gas diffusion resulting from offshore platform blowout[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(9):114.[doi:10.11731/j.issn.1673-193x.2017.08.018]
[5]陈旭芳,李云涛,帅健.水面LNG液池扩展模型的分析与对比研究[J].中国安全生产科学技术,2018,14(3):115.[doi:10.11731/j.issn.1673-193x.2018.03.017]
 CHEN Xufang,LI Yuntao,SHUAI Jian.Analysis and comparative study on liquid pool spread model for LNG on water surface[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(9):115.[doi:10.11731/j.issn.1673-193x.2018.03.017]
[6]陈晓坤,王二飞,王秋红.管道内瓦斯煤尘共混爆炸温度特性[J].中国安全生产科学技术,2019,15(11):5.[doi:10.11731/j.issn.1673-193x.2019.11.001]
 CHEN Xiaokun,WANG Erfei,WANG Qiuhong.Explosion temperature characteristics of mixed gas and coal dust in pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(9):5.[doi:10.11731/j.issn.1673-193x.2019.11.001]
[7]刘自亮,熊思江,花争立,等.埋地输氢管道泄漏爆炸事故后果模拟分析[J].中国安全生产科学技术,2019,15(12):94.[doi:10.11731/j.issn.1673-193x.2019.12.016]
 LIU Ziliang,XIONG Sijiang,HUA Zhengli,et al.Simulation analysis on leakage and explosion accident consequence of buried hydrogen pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(9):94.[doi:10.11731/j.issn.1673-193x.2019.12.016]
[8]杨志华,宋佩月,付建民,等.原油储罐区可燃气体探测器布置优化方案研究[J].中国安全生产科学技术,2021,17(1):85.[doi:10.11731/j.issn.1673-193x.2021.01.014]
 YANG Zhihua,SONG Peiyue,FU Jianmin,et al.Study on layout optimization scheme of combustible gas detectors in crude oil storage tank area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):85.[doi:10.11731/j.issn.1673-193x.2021.01.014]
[9]程方明,张安邦,王焘,等.高压天然气非恒定速率泄漏扩散数值模拟研究*[J].中国安全生产科学技术,2021,17(1):90.[doi:10.11731/j.issn.1673-193x.2021.01.015]
 CHENG Fangming,ZHANG Anbang,WANG Tao,et al.Numerical simulation study on non-constant rate leakage and diffusion of highpressure natural gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):90.[doi:10.11731/j.issn.1673-193x.2021.01.015]
[10]贾泉升,司荣军,李润之,等.初始瓦斯浓度对爆炸温度影响实验研究*[J].中国安全生产科学技术,2021,17(12):37.[doi:10.11731/j.issn.1673-193x.2021.12.006]
 JIA Quansheng,SI Rongjun,LI Runzhi,et al.Experimental research on influence of initial gas concentration on explosion temperature[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):37.[doi:10.11731/j.issn.1673-193x.2021.12.006]

备注/Memo

备注/Memo:
收稿日期:2016-06-06
作者简介:张印,硕士研究生。
更新日期/Last Update: 2016-12-08