|本期目录/Table of Contents|

[1]陈晓坤,王二飞,王秋红.管道内瓦斯煤尘共混爆炸温度特性[J].中国安全生产科学技术,2019,15(11):5-10.[doi:10.11731/j.issn.1673-193x.2019.11.001]
 CHEN Xiaokun,WANG Erfei,WANG Qiuhong.Explosion temperature characteristics of mixed gas and coal dust in pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(11):5-10.[doi:10.11731/j.issn.1673-193x.2019.11.001]
点击复制

管道内瓦斯煤尘共混爆炸温度特性
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年11期
页码:
5-10
栏目:
学术论著
出版日期:
2019-11-30

文章信息/Info

Title:
Explosion temperature characteristics of mixed gas and coal dust in pipeline
文章编号:
1673-193X(2019)-11-0005-06
作者:
陈晓坤王二飞王秋红
(1.西安科技大学 安全科学与工程学院,陕西 西安 710054;
2.陕西省煤火灾害防治重点实验室,陕西 西安 710054)
Author(s):
CHEN Xiaokun WANG Erfei WANG Qiuhong
(1.College of Safety Science and Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China;
2.Shaanxi Key Lab of Prevention and Control of Coal Fire,Xi’an Shaanxi 710054,China)
关键词:
瓦斯煤尘预混爆炸爆炸温度
Keywords:
gas coal dust premixed explosion explosion temperature
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2019.11.001
文献标志码:
A
摘要:
采用瞬态火焰传播实验系统,对7%,8%,9%,10%和11%的瓦斯体积浓度分别与不同浓度的长焰煤煤尘混合,并使用直径25 μm的Pt/Rh13-Pt微细热电偶测量温度,揭示受限空间内瓦斯与煤尘混合爆炸温度特性。结果表明:煤尘浓度一定时,随着瓦斯浓度的增加,爆炸温度先增加后减小;纯瓦斯浓度在10%时爆炸温度最高,加入煤尘后的混合体系中,瓦斯浓度为9%时爆炸温度最高;瓦斯浓度不变时,随着煤尘浓度的增加,爆炸温度一直减小;7%~11%瓦斯分别与130 g/m3煤尘混合爆炸后测得最高温度分别为1 333.6,1 475.4,1 511.4,1 455.6,1 396.4 ℃;与9%纯瓦斯爆炸相比,9%瓦斯与130,260,520,780 g/m3煤尘混合爆炸后测得最高温度分别降低7.2%,11.5%,15.0%和22.9%。结论得到的瓦斯煤尘共混爆炸温度数据可为煤矿灾害高温防护提供参考依据。
Abstract:
Using the experimental system of transient flame propagation,the gas with the volume concentration of 7%,8%,9%,10%,and 11% was mixed with the coal dust of long flame coal with different concentrations respectively.Meanwhile,the temperature was measured using a Pt/Rh13Pt thermocouple with a diameter of 25 μm,and the mixed explosion temperature characteristics of gas and coal dust in the confined space was revealed.The results showed that the explosion temperature increased first and then decreased with the increasing gas concentration under the constant concentration of coal dust.When the pure gas concentration was 10%,the explosion temperature was the highest.In the mixed system after adding the coal dust,the explosion temperature was the highest when the gas concentration was 9%.When the gas concentration was constant,the explosion temperature decreased with the increase of coal dust concentration.The measured highest temperatures of mixture explosion with 7%-11% gas and 130 g/m3 coal dust was 1 333.6,1 475.4,1 511.4,1 455.6 and 1 396.4 ℃,respectively.Compared to the 9% pure gas explosion,the measured maximum temperature of mixed explosion with 9% gas and 130,260,520,780 g/m3 coal dust decreased by 7.2%,11.5%,15.0%,and 22.9%,respectively.The temperature data of mixed explosion of gas and coal dust can provide reference for the high temperature protection of coal mine disasters.

参考文献/References:

[1]王连聪,梁运涛,罗海珠.我国矿井热动力灾害理论研究进展与展望[J].煤炭科学技术,2018,46(7):1-9. WANG Liancong,LIANG Yuntao,LUO Haizhu.Research progress and outlook on theory of thermodynamic disaster of coal mine in China[J].Coal Science and Technology,2018,46(7):1-9.
[2]司荣军.瓦斯煤尘爆炸研究现状及发展趋势[J].矿业安全与环保,2014,41(1):72-75. SI Rongjun.Research status and development trend of gas and coal dust explosion[J].Mining Safety and Environmental Protection,2014,41(1):72-75.
[3]曲志明,王育德.甲烷煤尘燃烧爆炸试验研究[J].中国安全科学学报,2012,22(11):55-61. QU Zhiming,WANG Yude.Experimental study on methane and coal dust combustion and explosion[J].China Safety Science Journal,2012,22(11):55-61.
[4]SONG S X,CHENG Y F,MENG X R,et al.Hybrid CH4/coal dust explosions in a 20 L spherical vessel[J].Process Safety and Environmental Protection,2019,122:281-287.
[5]AJRASH M J,ZANGANEH J,MOGHTADERI B.Methane-coal dust hybrid fuel explosion properties in a large scale cylindrical explosion chamber[J].Journal of Loss Prevention in the Process Industries,2016,40:317-328.
[6]KUNDUS K,ZANGANEH J,ESCHEBACH D,et al.Explosion severity of methane-coal dust hybrid mixtures in a ducted spherical vessel[J].Powder Technology,2018,323:95-102.
[7]CAO W G,QIN Q F,CAO W,et al.Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20 L spherical vessel[J].Powder Technology,2017,310:17-23.
[8]ZHU C J,LIN B Q,JIANG B Y.Flame acceleration of premixed methane/air explosion in parallel pipes[J].Journal of Loss Prevention in the Process Industries,2012,25(2):383-390.
[9]王博,苟瑞君,阚润哲.煤尘粒径对瓦斯煤尘爆炸的影响研究[J].中北大学学报,2019,40(1):85-89. WANG Bo,GOU Ruijun,KAN Runzhe.Study on the influent of particle size of coal dust on gas and coal dust explosion[J].Journal of North University of China,2019,40(1):85-89.
[10]李海涛,陈晓坤,邓军,等.湍流状态下竖直管道内甲烷-煤尘预混特征及爆炸过程数值模拟[J].煤炭学报,2018,43(6):1769-1779. LI Haitao,CHEN Xiaokun,DENG Jun,et al.Numerical simulation on the premix properties and explosion process of methane/coal dustmixture in a vertical pipeline under turbulent flow[J].Journal of China Coal Society,2018,43(6):1769-1779.
[11]许航.水平管道内甲烷-煤尘复合爆炸压力研究[D].太原:中北大学,2013.
[12]司荣军,李润之,苏岱峰.煤尘云质量浓度对瓦斯爆炸压力影响的试验研究[J].安全与环境学报,2018,18(5):1796-1798. SI Rongjun,LI Runzhi,SU Daifeng.Investigation of the influence of the coal dust cloud on the gas explosion pressure[J].Journal of Safety and Environment,2018,18(5):1796-1798.
[13]杨书召,刘星魁.半封闭受限空间煤尘与瓦斯耦合爆炸研究[J].河南工程学院学报,2014,26(2):40-44. YANG Shuzhao,LIU Xingkui.Study on dust and gas explosion in semi-closed confined spaces [J].Journal of Henan Institute of Engineering,2014,26(2):40-44.
[14]姜海鹏.煤尘浓度对瓦斯爆炸极限的影响研究[D].北京:煤炭科学研究总院,2014.
[15]王磊,李润之.瓦斯、煤尘共存条件下爆炸极限变化规律实验研究[J].中国矿业,2016,25(4):87-90. WANG Lei,LI Runzhi.Experimental study on the explosion limits change laws undergas and coal dust coexisting conditions[J].China Mining Magazine,2016,25(4):87-90.
[16]刘义.甲烷、煤尘火焰结构及传播特性的研究[D].合肥:中国科学技术大学,2006.
[17]王冬雪,刘剑,高科,等.煤尘挥发分及粒径对爆炸火焰长度的影响研究[J].中国安全生产科学技术,2016,12(5):43-47. WANG Dongxue,LIU Jian,GAO Ke,et al.Study on influence to length of explosion flame by volatile contentand particle size of coal dust[J].Journal of Safety Science and Technology,2016,12(5):43-47.
[18]刘天奇,郑秋雨,苏长青.水平管内不同煤质煤尘爆炸火焰传播特性实验研究[J].中国安全生产科学技术,2018,14(10):129-134. LIU Tianqi,ZHENG Qiuyu,SU Changqing.Experimental study on flame propagation characteristics of coal dust explosion underdifferent coal properties in horizontal tube[J].Journal of Safety Science and Technology,2018,14(10):129-134.
[19]WANG Q H,DENG J,SUN J H,et al.Flame propagation characteristics and combustion mechanism of FeOOH-coated zirconium particles[J].Journal of Shanghai Ocean University,2012,126(2):1-9.
[20]SUN J H,DOBASHI R,HIRANO T.Temperature profile across the combustion zone propagating through an iron particle cloud[J].Journal of Loss Prevention in the Process Industries,2001,14(6):463-467.
[21]DENKEVITS A.Explosibility of hydrogen-graphite dust hybrid mixtures[J].Journal of Loss Prevention in the Process Industries,2007,20(4-6):698-707.

相似文献/References:

[1]冯永安,胡双启,胡立双,等.基于20L球形爆炸装置的甲烷煤尘混合爆炸实验[J].中国安全生产科学技术,2012,8(7):16.
 FENG Yong an,HU Shuang qi,HU Li shuang,et al.Coal dust/methane mixture explosion experiment based on 20 L spherical explosive device[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(11):16.
[2]李树刚,徐竟天,黄金星.基于工业以太网的瓦斯监控系统设计[J].中国安全生产科学技术,2010,6(2):141.
 LI Shu-gang,XU Jing-tian,HUANG Jin-xing.Design of gas monitoring system based on industrial ethenet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(11):141.
[3]蒋海波,肖跃龙,赵妩.新型表面活性剂溶液对煤尘的润湿性能研究[J].中国安全生产科学技术,2013,9(6):11.[doi:10.11731/j.issn.1673-193x.2013.06.002]
 JIANG Hai bo,XIAO Yue long,ZHAO Wu.Study on the wetting property of a novel surfactant solution on coal dust[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(11):11.[doi:10.11731/j.issn.1673-193x.2013.06.002]
[4]张笑难,蔡峰,费玉祥,等.煤层注水除尘技术在综掘工作面中的应用[J].中国安全生产科学技术,2013,9(10):85.[doi:10.11731/j.issn.1673-193x.2013.10.015]
 ZHANG Xiao nan,CAI Feng,FEI Yu xiang,et al.Research and application of affusion dust removal technology in the mechanized excavation faces[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(11):85.[doi:10.11731/j.issn.1673-193x.2013.10.015]
[5]赵宁,戴广龙,黄文尧,等.深孔预裂爆破强制放顶技术的研究与应用[J].中国安全生产科学技术,2014,10(4):38.[doi:10.11731/j.issn.1673-193x.2014.04.006]
 ZHAO Ning,DAI Guang long,ZHANG Rui.Research and application of deep hole presplitting blasting forced caving technology[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(11):38.[doi:10.11731/j.issn.1673-193x.2014.04.006]
[6]张雨浓,戴俊,魏建平,等.一种复合催化剂及其光催化降解煤矿瓦斯的性能研究[J].中国安全生产科学技术,2016,12(10):12.[doi:10.11731/j.issn.1673-193x.2016.10.002]
 ZHANG Yunong,DAI Jun,WEI Jianping,et al.Study on a composite catalyst and its performance for degradation of coal-mine gas by photocatalysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(11):12.[doi:10.11731/j.issn.1673-193x.2016.10.002]
[7]臧杰,徐辉.煤粒瓦斯扩散行为的气压依赖性研究[J].中国安全生产科学技术,2017,13(4):21.[doi:10.11731/j.issn.1673-193x.2017.04.004]
 ZANG Jie,XU Hui.Study on dependence of gas diffusion behavior in coal particles on pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(11):21.[doi:10.11731/j.issn.1673-193x.2017.04.004]
[8]唐巨鹏,田虎楠,马圆.煤系页岩瓦斯吸附-解吸特性核磁共振实验研究[J].中国安全生产科学技术,2017,13(6):121.[doi:10.11731/j.issn.1673-193x.2017.06.020]
 TANG Jupeng,TIAN Hunan,MA Yuan.Experimental research on adsorption-desorption characteristics of shale gas in coal shale by nuclear magnetic resonance[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(11):121.[doi:10.11731/j.issn.1673-193x.2017.06.020]
[9]李润求,吴莹莹,施式亮,等.煤矿瓦斯涌出时序预测的自组织数据挖掘方法[J].中国安全生产科学技术,2017,13(7):18.[doi:10.11731/j.issn.1673-193x.2017.07.003]
 LI Runqiu,WU Yingying,SHI Shiliang,et al.Research on self-organizing data mining method for time series prediction of gas emission in coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(11):18.[doi:10.11731/j.issn.1673-193x.2017.07.003]
[10]马建宏,候超,信长喻,等.型煤峰后渗透特性试验研究[J].中国安全生产科学技术,2017,13(11):104.[doi:10.11731/j.issn.1673-193x.2017.11.017]
 MA Jianhong,HOU Chao,XIN Changyu,et al.Experimental study on permeability characteristics of briquette coal after peak[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(11):104.[doi:10.11731/j.issn.1673-193x.2017.11.017]

备注/Memo

备注/Memo:
收稿日期: 2019-09-01
* 基金项目: 国家重点研发计划项目(2016YFC0800100,2018YFC0807900);国家自然科学基金项目(51504190)
作者简介: 陈晓坤,博士,教授,主要研究方向为煤火灾害防控与职业危害防治。
通信作者: 王秋红,博士,副教授,主要研究方向为工业安全理论及防治技术。
更新日期/Last Update: 2019-12-25