|本期目录/Table of Contents|

[1]于瓅,刘泽功.基于神经网络模型的燃料空气混合物爆炸威力预测研究[J].中国安全生产科学技术,2015,11(9):83-87.[doi:10.11731/j.issn.1673-193x.2015.09.013]
 YU Li,LIU Ze-gong.Prediction on explosion power of fuel air mixture based on neural network model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(9):83-87.[doi:10.11731/j.issn.1673-193x.2015.09.013]
点击复制

基于神经网络模型的燃料空气混合物爆炸威力预测研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
11
期数:
2015年9期
页码:
83-87
栏目:
职业安全卫生管理与技术
出版日期:
2015-09-30

文章信息/Info

Title:
Prediction on explosion power of fuel air mixture based on neural network model
作者:
于瓅1刘泽功2
(1. 安徽理工大学 计算机科学与工程学院, 安徽 淮南 232001;2. 安徽理工大学 能源与安全学院, 安徽 淮南 232001)
Author(s):
YU Li1 LIU Ze-gong2
1. School of Computer Science and Project, Anhui University of Science and Technology, Huainan Anhui 232001, China;2. School of Mining and Safety Engineering, Anhui University of Science and Technology, Huainan Anhui 232001, China)
关键词:
神经网络燃料空气混合物爆炸威力预测
Keywords:
neural network fuel air mixture explosion power prediction
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2015.09.013
文献标志码:
A
摘要:
燃料空气混合物爆炸威力准确预测研究是学术界的一个难题。针对燃料空气混合物爆炸威力有效预测问题,采用神经网络方法,设计多层神经网络模型,进行实际预测应用。应用结果表明,采用的预测方法简便、可行,可以为燃料空气混合物爆炸威力预测提供一种新途径。相比3层BP模型,设计的预测模型可以减少训练次数,缩短训练时间,提高预测正确率,应用优势较明显。
Abstract:
The research about accurate prediction on explosion power of fuel air mixture is a difficult problem in academic circle. Aiming at the effective prediction problem on explosion power of fuel air mixture, the neural network method was used to design the multi-layer neural network model, and the practical prediction application was conducted. The results showed that the applied prediction method is simple and feasible, and can provide a new way for the prediction on explosion power of fuel air mixture. Compared with the 3-layer BP model, the prediction model designed in the paper can reduce training number, shorten training time, increase prediction accuracy, and the application advantage is more obvious.

参考文献/References:

[1]Van Wingerden C J M. Experimental investigation into the Strength of blast waves generated by vapor cloud explosions in congested areas[C]. 6th Inter Symposium on Loss Prevention and Safety Promotion in the Process Industries, Oslo. Norway,1998
[2]Van Den Berg A C, Eggen M M. Guidance for the application of the multi-energy method[C]. The 2nd International Specialist Meeting on Fuel-Air-Explosions, Bergen,Norway,1996,June: 27
[3]Henry O. Case study demonstrating benefit of analyzing blast dynamics[J]. International Conference and Workshop on Process Safety Management and Inherently Safer Processes, Florida,1996,Oct:8-11
[4]王德润,沈兆武,周凯元,等. 固、液相FAE一次引爆实验研究[J]. 爆炸与冲击, 2004, 24(5): 391-395WANG De-run, SHEN Zhao-wu, ZHOU Kai-yuan, et al. Experimental study on single ignition of solid and liquid FAE[J]. Explosion and Shock Waves, 2004, 24(5): 391-395
[5]张奇,白春华,刘庆明,等. 一次引爆燃料空气炸药及其爆炸效应研究[J]. 实验力学, 2000,15(4): 448-453ZHANG Qi, BAI Chun-hua, LIU Qing-ming, et al. Investigation on single ignition fuel air explosive and its explosion effects[J]. Journal of Experimental Mechanics, 2000, 15(4): 448-453
[6]贵大勇,刘吉平,冯顺山. 几种典型燃料空气炸药威力性能研究[J]. 含能材料, 2002,10(3): 121-124GUI Da-yong, LIU Ji-ping, FENG Shun-shan. Research of power performance of several typical fuel air explosices[J]. Energetic Materials, 2002, 10(3): 121-124
[7]熊祖钊,白春华. 燃料空气炸药武器威力评价指标研究[J]. 火炸药学报, 2002, (2): 19-22XIONG Zu-zhao, BAI Chun-hua. Study of fuel air explosive weapon power evaluation indexes[J]. Chinese Journal of Explosives & Propellants, 2002, (2): 19-22
[8]秦友花. 新型燃料空气炸药及其爆炸机理的研究[D]. 合肥:中国科学技术大学, 2002
[9]侯祥林,胡英,李永强,等. 多层人工神经网络合理结构的确定方法[J]. 东北大学学报(自然科学版), 2003, 24(1): 35-38HOU Xiang-lin, HU Ying, LI Yong-qiang, et al. Rational structure of multi-layer artificial neural network[J]. Journal of Northeastern University(Natural Science), 2003, 24(1): 35-38
[10]周佳俊,欧智坚. 深层神经网络预训练的改进初始化方法[J]. 电讯技术, 2013, 53(7): 895-898ZHOU Jia-jun, OU Zhi-jian. Improved initialization of pre-training in deep neural network[J]. Telecommunication Engineering, 2013, 53(7): 895-898

相似文献/References:

[1]欧韬,周长春.基于神经网络的民航安全态势评估模型及仿真[J].中国安全生产科学技术,2011,7(2):34.
 OU Tao,ZHOU Chang chun.Situation assessment model of civil aviation safety based on neural network and its simulation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(9):34.
[2]周忠科,王立杰.基于BP神经网络的煤矿安全预警评估机制研究[J].中国安全生产科学技术,2011,7(4):134.
 ZHOU Zhong-ke,?WANG Li-jie.Study on safety early-warning assessment in coal mine based on bp neural networks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(9):134.
[3]王以恒.基于BP神经网络算法的北京市地铁站应急疏散能力仿真评估模型[J].中国安全生产科学技术,2012,8(1):5.
 WANG Yi-heng.Virtual assessment model on emergency evacuation capacity of Beijing subway based on BP neural network algorithm[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(9):5.
[4]甘旭升,端木京顺,丛伟,等.基于支持向量机的飞行安全隐患危险性评价[J].中国安全生产科学技术,2010,6(3):206.
 GAN Xu-sheng,DUANMU Jing-shun,CONG Wei,et al.Fatalness assessment of flight safety hidden danger based on support vector machine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(9):206.
[5]周瑾.基于神经网络的建筑物火险评价[J].中国安全生产科学技术,2013,9(10):177.[doi:10.11731/j.issn.1673-193x.2013.10.032]
 ZHOU Jin.Fire risk assessment for buildings based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(9):177.[doi:10.11731/j.issn.1673-193x.2013.10.032]
[6]刘海滨,李光荣,刘 欢,等.基于ART-2人工神经网络的煤矿安全风险评价[J].中国安全生产科学技术,2014,10(2):81.[doi:10.11731/j.issn.1673-193x.2014.02.014]
 LIU Hai bin,LI Guang rong,LIU Huan,et al.Coal mine safety risk assessment based on ART2 neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(9):81.[doi:10.11731/j.issn.1673-193x.2014.02.014]
[7]杜燮祎,张敏,王颖,等.基于改进BP神经网络的职业危害预警模型*[J].中国安全生产科学技术,2009,5(5):63.
 DU Xie yi,ZHANG Min,WANG Ying,et al.The early warning model for occupational hazards based on improved BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(9):63.
[8]邓力,刘全义,胡林,等.基于BP神经网络的受限空间火灾联合探测方法[J].中国安全生产科学技术,2020,16(1):158.[doi:10.11731/j.issn.1673-193x.2020.01.026]
 DENG Li,LIU Quanyi,HU Lin,et al.Joint detection method of fire in confined space based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(9):158.[doi:10.11731/j.issn.1673-193x.2020.01.026]
[9]司旭彤,张希恒,赵佳,等.基于神经网络的闸阀模糊可靠度计算[J].中国安全生产科学技术,2021,17(2):123.[doi:10.11731/j.issn.1673-193x.2021.02.019]
 SI Xutong,ZHANG Xiheng,ZHAO Jia,et al.Fuzzy reliability calculation of gate valve based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):123.[doi:10.11731/j.issn.1673-193x.2021.02.019]
[10]段文义,王林元,邓洪波,等.氯乙烯储罐注水堵漏腐蚀风险的预测方法研究*[J].中国安全生产科学技术,2021,17(9):114.[doi:10.11731/j.issn.1673-193x.2021.09.018]
 DUAN Wenyi,WANG Linyuan,DENG Hongbo,et al.Study on prediction method for corrosion risk of water injection leak-stoppage of vinyl chloride storage tank[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(9):114.[doi:10.11731/j.issn.1673-193x.2021.09.018]

备注/Memo

备注/Memo:
安徽省自然科学基金项目(KJ2011Z086,KJ2013A97);安徽省博士后基金项目(DG123);安徽理工大学硕博基金项目(11111);安徽理工大学中青年学术骨干基金项目
更新日期/Last Update: 2015-09-30