|本期目录/Table of Contents|

[1]朱江,谢涛.面向民航飞机故障安全诊断的知识图谱构建方法*[J].中国安全生产科学技术,2025,21(3):186-194.[doi:10.11731/j.issn.1673-193x.2025.03.024]
 ZHU Jiang,XIE Tao.Construction method of knowledge graph for fault safety diagnosis of civil aviation aircrafts[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2025,21(3):186-194.[doi:10.11731/j.issn.1673-193x.2025.03.024]
点击复制

面向民航飞机故障安全诊断的知识图谱构建方法*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
21
期数:
2025年3期
页码:
186-194
栏目:
职业安全卫生管理与技术
出版日期:
2025-03-31

文章信息/Info

Title:
Construction method of knowledge graph for fault safety diagnosis of civil aviation aircrafts
文章编号:
1673-193X(2025)-03-0186-09
作者:
朱江谢涛
(昆明理工大学 民航与航空学院,云南 昆明 650500)
Author(s):
ZHU Jiang XIE Tao
(Faculty of Civil Aviation and Aeronautics,Kunming University of Science and Technology,Yunnan Kunming 650500,China)
关键词:
飞机设备故障诊断数据增强多尺度注意力知识图谱智能问答
Keywords:
aircraft equipment fault diagnosis data enhancement multi-scale attention knowledge graph intelligent question answering
分类号:
X949
DOI:
10.11731/j.issn.1673-193x.2025.03.024
文献标志码:
A
摘要:
为更好地管理和利用民航飞机设备故障维修知识,提高飞机故障安全诊断的决策效率,提出融合数据增强和多尺度注意力机制的飞机设备故障知识图谱构建方法。首先,创建基于语义相似性的实体集构建模式,结合余弦相似度计算扩充数据样本。其次,采用多尺度注意力对BERT-BiLSTM-CRF模型进行优化改进,以提升知识抽取时局部和全局信息的关注度。最后,利用Neo4j图数据库搭建飞机设备故障知识图谱,并辅助开发智能问答系统用于决策推荐。研究结果表明:所提方法有效解决模型在小样本数据上的局限性,且故障文本知识抽取性能较基准模型显著提升,实体识别精确率、召回率和F1分别达到92.59%,94.68%和93.62%,为搭建知识图谱提供可靠信息。研究结果可为实现飞机故障的高效诊断和预防飞机事故风险提供参考。
Abstract:
In order to better manage and utilize the knowledge of fault maintenance for civil aviation aircraft equipment,and improve the decision-making efficiency of aircraft fault safety diagnosis,a construction method of knowledge graph for the aircraft equipment fault integrating the data enhancement and multi-scale attention mechanism was proposed.Firstly,a construction mode of entity set based on semantic similarity was created,and the data samples were expanded combining with the cosine similarity calculation.Secondly,the BERT-BiLSTM-CRF model was optimized and improved using the multiscale attention to enhance the attention of local and global information during knowledge extraction.Finally,the Neo4j graph database was utilized to build the knowledge graph of aircraft equipment faults,and an intelligent question answering system was developed for decision-making recommendation.The results show that the proposed method effectively solves the limitation of the model on small sample data,and significantly improves the performance of fault text knowledge extraction compared with the baseline model.The entity recognition precision,recall rate and F1 reach 92.59%,94.68% and 93.62% respectively,which provided reliable information for the construction of the knowledge graph.The research results can provide a reference for the efficient diagnosis of aircraft faults and the prevention of aircraft accident risk.

参考文献/References:

[1]RAHN A,SCHUCH M,WICKE K,et al.Beyond flight operations:assessing the environmental impact of aircraft maintenance through life cycle assessment[J].Journal of Cleaner Production,2024,453:142195-.
[2]李勇泽.飞机维修手册的知识图谱构建与应用研究[D].天津:中国民航大学,2022.
[3]LIU P F,QIAN L,ZHAO X W,et al.Joint knowledge graph and large language model for fault diagnosis and its application in aviation assembly [J].IEEE Transactionson Industrial Informatic,2024,20(6):8160-8169.
[4]邢雪琪,丁雨童,夏唐斌,等.基于知识图谱的商用飞机维修方案推荐系统集成建模[J].浙江大学学报(工学版),2023,57(3):512-521. XING Xueqi,DING Yutong,XIA Tangbin,et al.Integrated modeling of commercial aircraft maintenance plan recommendation system based on knowledge graph [J].Journal of Zhejiang University (Engineering Science),2023,57(3):512-521.
[5]ZHOU S H,WEI C F,LI P,et al.A text-driven aircraft fault diagnosis model based on Word2vec and stacking ensemble learning[J].Aerospace,2021,8(12):357.
[6]陈勇刚,刘康妮,王帅.基于BiGRU-Attention改进的航空设备故障知识图谱构建[J].航空学报,2024,45(18):168-181. CHEN Yonggang,LIU Kangni,WANG Shuai.Research on building a fault knowledge graph for aviation equipment based on BiGRU-Attention improvement[J].Acta Aeronautica et Astronautica Sinica.2024,45(18):168-181.
[7]TANG X L,CHI G,CUI L J,et al.Exploring research on the construction and application of knowledge graphs for aircraft fault diagnosis[J].Sensors,2023,23(11):5295.
[8]YUE S W,XIAO L,LI J X,et al.Research on application of knowledge graph for aircraft maintenance[J].Advances in Mechanical Engineering,2022,14(7):16878132221107429.
[9]MENG F Q,YANG S S,WANG J D,et al.Creating knowledge graph of electric power equipment faults based on BERT-BiLSTM-CRF model [J].Journal of Electrical Engineering & Technology,2022,17(4):1-10.
[10]PENG C Y,XIA F,NASERIPARSA M,et al.Knowledge graphs:opportunities and challenges [J].Artificial Intelligence Review,2023,56(11):31-32.
[11]张栋豪,刘振宇,郏维强,等.知识图谱在智能制造领域的研究现状及其应用前景综述[J].机械工程学报,2021,57(5):90-113. ZHANG Donghao,LIU Zhenyu,JIA Weiqiang,et al.A review on knowledge graph and its application prospects to intelligent manufacturing[J].Journal of Mechanical Engineering,2021,57(5):90-113.
[12]武杰,张安思,吴茂东,等.知识图谱在装备故障诊断领域的研究与应用综述[J].计算机应用,2024,44(9):2651-2659. WU Jie,ZHANG Ansi,WU Maodong,et al.Overview of research and application of knowledge graph in equipment fault diagnosis [J].Journal of Computer Applications,2024,44(9):2651-2659.
[13]王明达,吴志生,朱光辉,等.燃气轮机故障知识图谱构建方法与应用研究[J].中国安全生产科学技术,2023,19(11):121-128. WANG Mingda,WU Zhisheng,ZHU Guanghui,et al.Research on construction method and application of knowledge graph for gas turbine fault [J].Journal of Safety Science and Technology,2023,19(11):121-128.
[14]XIONG M L,WANG H W,WONG D Y,et al.Enhancing aviation safety and mitigating accidents:a study on aviation safety hazard identification[J].Advanced Engineering Informatics,2024,62:102732.
[15]WEI J,ZOU K.EDA:easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019:6382-6388.
[16]OUYANG D,HE S,ZHANG G Z,et al.Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2023:1-5.

相似文献/References:

[1]马成正.基于概率神经网络的液氨汽车罐车复合故障诊断[J].中国安全生产科学技术,2011,7(3):114.
 MA Cheng-zheng.Compound Fault Diagnosis of Liquid Ammonia Tank Car Based on Probabilistic Neural Network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(3):114.
[2]李佃祥,于洪国,周江涛.油管静水试压装置安全控制系统设计与开发[J].中国安全生产科学技术,2012,8(12):103.
 LI Dian xiang,YU Hong guo,ZHOU Jiang tao.Design and development of safe control system of tubing hydraulic pressure experiment equipment[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(3):103.
[3]雷雨,吴超,王秉.人对声信号的安全认知模型构建及其应用[J].中国安全生产科学技术,2018,14(6):27.[doi:10.11731/j.issn.1673-193x.2018.06.004]
 LEI Yu,WU Chao,WANG Bing.Construction and application of safety cognition model for human to acoustic signals[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(3):27.[doi:10.11731/j.issn.1673-193x.2018.06.004]
[4]刘剑,刘丽,黄德,等.基于风量-风压复合特征的通风系统阻变型故障诊断[J].中国安全生产科学技术,2020,16(1):85.[doi:10.11731/j.issn.1673-193x.2020.01.014]
 LIU Jian,LIU Li,HUANG De,et al.Resistance variant fault diagnosis of ventilation system based on composite features of air volume and air pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):85.[doi:10.11731/j.issn.1673-193x.2020.01.014]
[5]潘伟,徐刚,熊方杰.基于非线性技术锅炉故障分析*[J].中国安全生产科学技术,2020,16(12):176.[doi:10.11731/j.issn.1673-193x.2020.12.028]
 PAN Wei,XU Gang,XIONG Fangjie.Analysis of boiler fault based on nonlinear technology[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):176.[doi:10.11731/j.issn.1673-193x.2020.12.028]
[6]倪景峰,乐晓瑞,常立峰,等.基于决策树的矿井通风阻变型故障诊断及传感器优化布置*[J].中国安全生产科学技术,2021,17(2):34.[doi:10.11731/j.issn.1673-193x.2021.02.005]
 NI Jingfeng,LE Xiaorui,CHANG Lifeng,et al.Resistance variant fault diagnosis and optimized layout of sensors for mine ventilation based on decision tree[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(3):34.[doi:10.11731/j.issn.1673-193x.2021.02.005]
[7]张瑞程,王新颖,胡磊磊,等.基于一维卷积神经网络的燃气管道泄漏声发射信号识别*[J].中国安全生产科学技术,2021,17(2):104.[doi:10.11731/j.issn.1673-193x.2021.02.016]
 ZHANG Ruicheng,WANG Xinying,HU Leilei,et al.Acoustic emission signal identification of gas pipeline leakage based on one-dimensional convolution neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(3):104.[doi:10.11731/j.issn.1673-193x.2021.02.016]
[8]倪景峰,李振,乐晓瑞,等.基于随机森林的阻变型通风网络故障诊断方法*[J].中国安全生产科学技术,2022,18(4):34.[doi:10.11731/j.issn.1673-193x.2022.04.005]
 NI Jingfeng,LI Zhen,LE Xiaorui,et al.Resistance variant fault diagnosis method of ventilation network based on random forest[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):34.[doi:10.11731/j.issn.1673-193x.2022.04.005]
[9]付敏,郝镒林,李萌,等.安全工程技术领域数字孪生应用研究综述*[J].中国安全生产科学技术,2022,18(4):243.[doi:10.11731/j.issn.1673-193x.2022.04.035]
 FU Min,HAO Yilin,LI Meng,et al.Summary of digital twin application research in field of safety engineering technology[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):243.[doi:10.11731/j.issn.1673-193x.2022.04.035]
[10]徐海军,李彦斌,王进,等.基于模糊Petri网的有载分接开关故障诊断方法研究*[J].中国安全生产科学技术,2022,18(5):222.[doi:10.11731/j.issn.1673-193x.2022.05.034]
 XU Haijun,LI Yanbin,WANG Jin,et al.Research on fault diagnosis method of on-load tap changer based on Fuzzy Petri net[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(3):222.[doi:10.11731/j.issn.1673-193x.2022.05.034]

备注/Memo

备注/Memo:
收稿日期: 2024-11-07
* 基金项目: 国家自然科学基金项目(62163021);云南省科技厅科技计划项目基础研究专项项目(202301AT070420)
作者简介: 朱江,硕士研究生,主要研究方向为民航飞机故障智能诊断。
通信作者: 谢涛,硕士,副教授,主要研究方向为人工智能技术、民航飞机智能检测技术等。
更新日期/Last Update: 2025-03-28