|本期目录/Table of Contents|

[1]张志伟,雷心怡,王一名,等.着床后引燃对电弧迸溅熔珠组织特征的影响*[J].中国安全生产科学技术,2022,18(8):202-209.[doi:10.11731/j.issn.1673-193x.2022.08.030]
 ZHANG Zhiwei,LEI Xinyi,WANG Yiming,et al.Influence of ignition after landing on microstructure characteristics of arc splashed melted bead[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(8):202-209.[doi:10.11731/j.issn.1673-193x.2022.08.030]
点击复制

着床后引燃对电弧迸溅熔珠组织特征的影响*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
18
期数:
2022年8期
页码:
202-209
栏目:
职业安全卫生管理与技术
出版日期:
2022-08-31

文章信息/Info

Title:
Influence of ignition after landing on microstructure characteristics of arc splashed melted bead
文章编号:
1673-193X(2022)-08-0202-08
作者:
张志伟雷心怡王一名周广英李阳王伟峰
(1.中国人民警察大学 研究生院,河北 廊坊 065000;
2.陕西省杨凌示范区消防救援支队,陕西 杨凌 712100;
3.黑龙江省大庆市消防救援支队,黑龙江 大庆 163000;
4.中国人民警察大学 物证鉴定中心,河北 廊坊 065000;5.西安科技大学 安全科学与工程学院,陕西 西安 710054)
Author(s):
ZHANG Zhiwei LEI Xinyi WANG Yiming ZHOU Guangying LI Yang WANG Weifeng
(1.Graduate Academy,China People’s Police University,Langfang Hebei 065000,China;
2.Yangling Demonstration Area Fire and Rescue Brigade,Yangling Shaanxi 712100,China;
3.Daqing Fire and Rescue Brigade,Daqing Heilongjiang 163000,China;
4.Institute of Forensic Science,China People’s Police University,Langfang Hebei 065000,China;
5.School of Safety Science and Engineering,Xi’an University of Science and Technology (XUST),Xi’an Shaanxi 710054,China)
关键词:
电气火灾故障电弧迸溅熔珠引燃过程金相组织
Keywords:
electrical fire arc fault splashed melted bead igniting process metallographic structure
分类号:
X934;X928.7
DOI:
10.11731/j.issn.1673-193x.2022.08.030
文献标志码:
A
摘要:
为探究迸溅熔珠着床后的热交换过程对其组织特征的影响,建立基于着床后高温迸溅熔珠的动态测温方法,从而揭示迸溅熔珠着床后引燃与否对其组织特征形成的影响规律。研究结果表明:引燃可燃物的熔珠受火焰热反馈和铜氧化放热的共同作用,着床后其温度出现反复波动,延长迸溅熔珠的冷却凝固时间,组织呈等轴状;无法引燃可燃物的熔珠在可测范围内,短暂升温后降温速率持续上升,组织更易呈现树枝状或胞状。研究结果可为准确认定电气故障电弧迸溅熔珠引发火灾提供技术支持。
Abstract:
In order to explore the influence of heat exchange process on the microstructure characteristics of the splashed melted bead after landing,a dynamic temperature measurement method for the high-temperature splashed melted bead after landing was established,and the influence of ignition on the formation of microstructure characteristics of splashed melted bead after landing was revealed.The results showed that under the combined effect of flame heat feedback and copper oxidation heat release,the temperature of melted bead igniting the combustibles fluctuated repeatedly after landing,which prolonged the cooling and solidification time of the melted bead,with the equiaxed microstructure.Within the measurable range,the cooling rate of the melted bead without igniting the combustibles continued to increase after a short period of temperature rise,and its microstructure was more likely to appear the dendritic or cellular structure.The results can provide technical support for accurately identifying the fire caused by the splashed melted bead of electrical arc fault.

参考文献/References:

[1]BABRAUSKAS V.Arc beads from fires:can “cause” beads be distinguished from “victim” beads by physical or chemical testing?[J].Journal of Fire Protection Engineering,2004,14(2):125-147.
[2]李海萍,龙志航,杨滋恒,等.基于Logistic模型的四川凉山州森林火灾风险分析[J].安全与环境学报,2021,21(2):498-505. LI Haiping,LONG Zhihang,YANG Ziheng,et al.Analysis of forest fire risk in Sichuan Liangshan based on Logistic model.[J].Journal of Safety and Environment,2021,21(2):498-505.
[3]National Fire Protection Association.NFPA 921:Guide for fire and explosion investigations 2017 Edition [M].Quincy Massachusetts:National Fire Protection Association Quincy Massachusetts,2016.
[4]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
[5]PLEASANCE G E,HART J A.An examination of particles from conductors clashing as possible source of bushfire ignition[R].Australia: State Electricity Commission of Victoria (SEC),1977.
[6]KUZNETSOV G V,STRIZHAK P A.Transient heat and mass transfer at the ignition of vapor and gas mixture by a moving hot particle[J].International Journal of Heat & Mass Transfer,2010,53(5-6):923-930.
[7]JAMES L U,CASEY D Z,FERNANDEZ-PELLO C.Cellulose spot fire ignition by hot metal particles[J].Proceedings of the Combustion Institute,2015,35(3):2707-2714.
[8]HADDEN R M,SCOTT S,LAUTENBERGER C,et al.Ignition of combustible fuel beds by hot particles:an experimental and theoretical study[J].Fire Technology,2011,47(2):341-355.
[9]FERNANDEZ-PELLO A C,LAUTENBERGER C,RICH D,et al.Spot fire ignition of natural fuel beds by hot metal particles,embers,and sparks[J].Combustion Science & Technology,2015,187(1-3):269-295.
[10]JAMES L U,CASEY D Z,TRAN V,et al.Flaming ignition behavior of hot steel and aluminum spheres landing in cellulose fuel beds[J].Fire Safety Science,2014,11:1368-1378.
[11]JAMES L U,CASEY D Z,FERNANDEZ-PELLO C.Spot fire ignition of natural fuels by hot aluminum particles[J].Fire Technology,2018,54(3):797-808.
[12]LIU Y,JAMES L U,XU C,et al.Temperature and motion tracking of metal spark sprays[J].Fire Technology,2019,55(6):2143-2169.
[13]荣彦超,李阳,刘义祥,等.基于Matlab的短路熔痕凝固过程中熔珠温度测算方法[J].中国安全生产科学技术,2020,16(8):75-81. RONG Yanchao,LI Yang,LIU Yixiang,et al.Measuring and calculating method of melt temperature during solidification process of short circuit melted mark based on Matlab[J].Journal of Safety Science and Technology,2020,16(8):75-81.
[14]FERNANDEZ-PELLO A C.Wildland fire spot ignition by sparks and firebrands[J].Fire Safety Journal,2017,4(40):2-10.
[15]MANZELLO S L,SUZUKI S,GOLLNER M J,et al.Role of firebrand combustion in large outdoor fire spread[J].Progress in Energy and Combustion Science,2020,76:1-19.
[16]BABRAUSKAS V.Research on electrical fires:the state of the art[J].Fire Safety Science,2008,9(6):3-18.
[17]中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会.电气火灾痕迹物证技术鉴定方法:第5部分:电气火灾物证识别和提取方法:GB/T 16840.5-2012[S].北京:中国标准出版社,2012.
[18]吴莹,孟庆山,王新明,等.铜导线短路熔痕的XPS研究[J].光谱学与光谱分析,2010,30(5):1408-1412. WU Ying,MENG Qingshan,WANG Xinming,et al.XPS analysis of beads formed by fuse breaking of electric copper wire[J].Spectroscopy and Spectral Analysis.2010,30(5):1408-1412.
[19]LIU K H,SHI Y H,CHOU J M,et al.Microstructural study on molten marks of fire-causing copper wires[J].Materials,2015,8(6):3776-3790.
[20]李阳,何江涛.基于Bayes判别模型的火场中铜导线短路熔痕定量金相鉴定方法研究[J].火灾科学,2015,24(4):201-208. LI Yang,HE Jiangtao.Quantitative metallography identificationmethod of copper conductor short-circuit molten mark based on theBayes discriminate analysis model[J].Fire Safety Science,2015,24(4):201-208.
[21]孙晓刚,李成伟,戴景民,等.多光谱辐射测温理论综述[J].计量学报,2002(4):248-250,286. SUN Xiaogang,LI Chengwei,DAI Jingmin,et al.Review on the theory of multi-spectral radiation thermometry[J].Acta Metrologica Sinica,2002(4):248-250,286.
[22]文玉秀,王敏.铜导线短路熔痕的SEM/EDS分析[J].中国安全科学学报,2011,21(6):84-87. WEN Yuxiu,WANG Min.SEM/EDS analysis on melted mark of short circuit copper wire[J].China Safety Science Journal.2011,21(6):84-87.

相似文献/References:

[1]武巍,胡双启.电气火灾残留物的SEM分析方法研究[J].中国安全生产科学技术,2010,6(4):15.
 WU Wei,HU Shuang-qi.Analysis method of SEM on residues of electrical fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(8):15.
[2]刘东旗,刘艳芹,陈宁,等.电气火灾的分析和预防[J].中国安全生产科学技术,2011,7(7):179.
 LIU Dng-qi,LIU Yan-qin,Chen Ning.Electric Fire of Analyzed and Its Precautions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(8):179.
[3]肖楚阳,宋守信.地铁电气火灾中机械方面影响因子系统动力学仿真分析[J].中国安全生产科学技术,2016,12(8):81.[doi:10.11731/j.issn.1673-193x.2016.08.013]
 XIAO Chuyang,SONG Shouxin.System dynamics simulation analysis on mechanical influence factors for electric fire in metro[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(8):81.[doi:10.11731/j.issn.1673-193x.2016.08.013]
[4]李华,朱瑕.高层建筑电气火灾隐患因子定量分析方法研究[J].中国安全生产科学技术,2018,14(12):124.[doi:10.11731/j.issn.1673-193x.2018.12.020]
 LI Hua,ZHU Xia.Research on quantitative analysis method for hidden trouble factors of electrical fire in highrise buildings[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):124.[doi:10.11731/j.issn.1673-193x.2018.12.020]
[5]王博,李阳,司永轩,等.ZR-BV单芯铜线过电流故障电弧熔痕特征研究[J].中国安全生产科学技术,2019,15(12):41.[doi:10.11731/j.issn.1673-193x.2019.12.007]
 WANG Bo,LI Yang,SI Yongxuan,et al.Study on characteristics of arc melting trace in over current fault of ZR-BV singlecore copper wire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(8):41.[doi:10.11731/j.issn.1673-193x.2019.12.007]
[6]荣彦超,李阳,刘义祥,等.基于Matlab的短路熔痕凝固过程中熔体温度测算方法*[J].中国安全生产科学技术,2020,16(8):75.[doi:10.11731/j.issn.1673-193x.2020.08.012]
 RONG Yanchao,LI Yang,LIU Yixiang,et al.Measuring and calculating method of melt temperature during solidification process of short circuit melted mark based on Matlab[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(8):75.[doi:10.11731/j.issn.1673-193x.2020.08.012]
[7]王泽伦,高洪鑫,刘艳丽,等.SVD在串联故障电弧检测及选相中的应用*[J].中国安全生产科学技术,2020,16(9):160.[doi:10.11731/j.issn.1673-193x.2020.09.025]
 WANG Zelun,GAO Hongxin,LIU Yanli,et al.Application of SVD in series fault arc detection and phase selection[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(8):160.[doi:10.11731/j.issn.1673-193x.2020.09.025]
[8]孙烨,李阳,王朴真,等.RVVB护套线过电流诱发短路故障发生概率与起火燃烧过程分析*[J].中国安全生产科学技术,2021,17(3):137.[doi:10.11731/j.issn.1673-193x.2021.03.021]
 SUN Ye,LI Yang,WANG Puzhen,et al.Analysis on occurrence probability of short circuit fault induced by over current of RVVB sheathed wire and its ignition and combustion process[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(8):137.[doi:10.11731/j.issn.1673-193x.2021.03.021]
[9]姜文宇,吴坚,孙烨,等.过电流故障铝导线熔痕部位与组织特征关联性研究*[J].中国安全生产科学技术,2022,18(1):75.[doi:10.11731/j.issn.1673-193x.2022.01.012]
 JIANG Wenyu,WU Jian,SUN Ye,et al.Study on correlation between location of melted marks and microstructure characteristics of aluminum conductor under overcurrent fault[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(8):75.[doi:10.11731/j.issn.1673-193x.2022.01.012]
[10]王伟峰,张方智,刘强,等.碳电极直径与负载特性对故障电弧断路器响应时间影响研究*[J].中国安全生产科学技术,2022,18(8):228.[doi:10.11731/j.issn.1673-193x.2022.08.034]
 WANG Weifeng,ZHANG Fangzhi,LIU Qiang,et al.Research on influence of carbon electrode diameter and load characteristics on response time of arc fault circuit breaker[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(8):228.[doi:10.11731/j.issn.1673-193x.2022.08.034]

备注/Memo

备注/Memo:
收稿日期: 2021-10-24
* 基金项目: 国家自然科学基金项目(52074213);河北省自然科学基金青年科学基金项目(E2021507002);中国人民警察大学重点实验室培育类课题(2019SYCXPD001)
作者简介: 张志伟,硕士研究生,主要研究方向为电气火灾物证鉴定。
通信作者: 李阳,博士研究生,副教授,主要研究方向为电气火灾调查及物证鉴定。
更新日期/Last Update: 2022-09-19