|本期目录/Table of Contents|

[1]荣彦超,李阳,刘义祥,等.基于Matlab的短路熔痕凝固过程中熔体温度测算方法*[J].中国安全生产科学技术,2020,16(8):75-81.[doi:10.11731/j.issn.1673-193x.2020.08.012]
 RONG Yanchao,LI Yang,LIU Yixiang,et al.Measuring and calculating method of melt temperature during solidification process of short circuit melted mark based on Matlab[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(8):75-81.[doi:10.11731/j.issn.1673-193x.2020.08.012]
点击复制

基于Matlab的短路熔痕凝固过程中熔体温度测算方法*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年8期
页码:
75-81
栏目:
职业安全卫生管理与技术
出版日期:
2020-08-31

文章信息/Info

Title:
Measuring and calculating method of melt temperature during solidification process of short circuit melted mark based on Matlab
文章编号:
1673-193X(2020)-08-0075-06
作者:
荣彦超李阳刘义祥汤昊王博
(1.中国人民警察大学 研究生三队,河北 廊坊 065000;
2.中国人民警察大学 物证鉴定中心,河北 廊坊 065000;
3.北京市消防救援总队 昌平支队,北京 102200)
Author(s):
RONG Yanchao LI Yang LIU Yixiang TANG Hao WANG Bo
(1.Squad Three of Graduate Faculty,China People’s Police University,Langfang Hebei 065000,China;
2.Fire Physical Evidence Appraisal Center,China People’s Police University,Langfang Hebei 065000,China;
3.Changping Detachment,Beijing Fire and Rescue Brigade,Beijing 102200,China)
关键词:
电气火灾短路熔痕色温原理熔体温度凝固速度
Keywords:
electrical fire short circuit melted mark principle of color temperature melt temperature solidification velocity
分类号:
X928.7
DOI:
10.11731/j.issn.1673-193x.2020.08.012
文献标志码:
A
摘要:
为解决无法对瞬时凝固的熔痕高温熔体进行测温,从而致使火灾物证鉴定界对短路熔痕组织形成规律无法达成共识的问题,使用高速摄像机采集熔痕形成时熔体的彩色影像,运用Matlab图像色温识别技术,对熔体凝固时的色彩变化进行识别与分析,从而建立测算短路熔痕凝固速率的方法。结果表明:该方法的平均标准差为9.63,标准不确定度为2.55 K,计算结果满足测试要求;在测算的10个熔痕中,灭弧瞬间熔体温度为1 734.03~2 759.15 K,初始冷却速率为-255.16~-86.61 K/ms,凝固时长为46.45~87.99 ms;灭弧时熔体温度与初始冷却速率呈近似正相关关系,与熔痕体积无关。通过此方法测算短路发生时高温熔体的温度变化,可为研究短路故障迸溅熔痕引燃、熔痕组织变化规律提供方法支持。
Abstract:
The short circuit melted mark is the key evidence for the identification of electrical fire.In order to solve the problem that it is impossible to measure the temperature of hightemperature melt for the melted mark with instantaneous solidification,so that there is no consensus about the formation regularity of short circuit melted mark in the community of fire physical evidence appraisal,the color images of melt when the melted marks formed were collected by using the highspeed camera,and the color change when the melt solidified was identified and analyzed by using the color temperature recognition technology of Matlab,thus a method for measuring and calculating the solidification velocity of short circuit melted mark was established.The results showed that the average standard deviation of the method was 9.63,and the standard uncertainty was 2.55 K,so the calculated results met the test requirements.In the measured ten melted marks,the melt temperature at the moment of arc extinguishing ranged from 1 734.03 to 2 759.15 K,the initial cooling velocity ranged from -86.61 to -255.16 K/ms,and the solidification duration ranged from 46.45 to 87.99 ms.The melt temperature at the moment of arc extinguishing presented the approximately positive correlation with the initial cooling velocity,while being independent of melt mark volume.This method can be used to measure and calculate the temperature change of hightemperature melt during the short circuit,and it can provide method support for studying the melted mark ignition caused by short circuit fault splash and the change laws of melted mark structure.

参考文献/References:

[1]中华人民共和国应急管理部.2018年全国火灾及出警情况[DB/OL].(2019-1-21)[2020-8-11].https://www.mem.gov.cn/was5/web/sousuo/index.html.
[2]National Fire Protection Association.NFPA 921:Guide for Fire and Explosion Investigations 2017 Edition [M].Quincy Massachusetts:National Fire Protection Association Quincy Massachusetts,2016.
[3]中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会.电气火灾痕迹物证技术鉴定方法 第4部分:金相法:GB/T 16840.4—1997[S].北京:中国标准出版社,1997.
[4]BABRAUSKAS V.Arc beads from fires:can ‘cause’ beads be distinguished from ‘victim’ beads by physical or chemical testing?[J].Journal of Fire Protection Engineering,2004,14(2):125-147.
[5]BABRAUSKAS V.Book Review:SFPE Handbook of Fire Protection Engineering[J].Journal of Fire Sciences,2016,34(2):164-167.
[6]BABRAUSKAS V.Arc mapping:a critical review[J].Fire Technology,2018,54(3):749-780.
[7]ERLANDSSON R,STRAND G.An investigation of physical characteristics indicating primary or secondary electrical damage[J].Fire Safety Journal,1985,8(2):97-103.
[8]BABRAUSKAS V.Fire due to electrical arcing:can ‘cause’ beads be distinguished from ‘victim’ beads by physical or chemical testing?[J].Fire and Materials,2003:189-201.
[9]BABRAUSKAS V.How do electrical wiring fault lead to structure ignitions?[J].Investigator(the Journal of the International Association of Arson Investigations),2002,52(3):39-45.
[10]李阳,何江涛.基于Bayes判别模型的火场中铜导线短路熔痕定量金相鉴定方法研究[J].火灾科学,2015,24(4):21-28. LI Yang,HE Jiangtao.Quantitative metal lography identification method of copper conductor short-circuit moltenmark based on the Bayes discriminate analysis model[J].Fire Safety Science,2015,24(4):21-28.
[11]武巍,胡双启.电气火灾残留物的SEM分析方法研究[J].中国安全生产科学技术,2010,6(4):15-19. WU Wei,HU Shuangqi.Analysis method of SEM on residues of electrical fire[J].Journal of Safety Science and Technology,2010,6(4):15-19.
[12]莫善军,彭敬文,梁栋.电气火灾一次短路熔痕金相组织特征参数定量分析[J].中国安全生产科学技术,2012,8(1):63-70. MO Shanjun,PENG Jingwen,LIANG Dong.Quantitative analysis of metallographic structure parameters of the melting trace caused by the first short circuit[J].Journal of Safety Science and Technology,2012,8(1):63-70.
[13]HUGH D,HIBBITT,PEDRO V M.A numerical,thermo-mechanical model for the welding and subsequent loading of a fabricated structure[J].Computers & Structures,1972,3(5):1145-1174.
[14]吴思根,周昕宇,蒋志伟,等.低频振荡扫描激光焊接铝合金薄板温度场数值模拟[J].应用激光,2019,39(3):440-447. WU Sigen,ZHOU Xinyu,JIANG Zhiwei,et al.Numerical simulation on the temperature field for low-frequency laser oscillation welding of aluminum alloy[J].Applied Laser,2019,39(3):440-447.

相似文献/References:

[1]武巍,胡双启.电气火灾残留物的SEM分析方法研究[J].中国安全生产科学技术,2010,6(4):15.
 WU Wei,HU Shuang-qi.Analysis method of SEM on residues of electrical fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(8):15.
[2]刘东旗,刘艳芹,陈宁,等.电气火灾的分析和预防[J].中国安全生产科学技术,2011,7(7):179.
 LIU Dng-qi,LIU Yan-qin,Chen Ning.Electric Fire of Analyzed and Its Precautions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(8):179.
[3]肖楚阳,宋守信.地铁电气火灾中机械方面影响因子系统动力学仿真分析[J].中国安全生产科学技术,2016,12(8):81.[doi:10.11731/j.issn.1673-193x.2016.08.013]
 XIAO Chuyang,SONG Shouxin.System dynamics simulation analysis on mechanical influence factors for electric fire in metro[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(8):81.[doi:10.11731/j.issn.1673-193x.2016.08.013]
[4]李华,朱瑕.高层建筑电气火灾隐患因子定量分析方法研究[J].中国安全生产科学技术,2018,14(12):124.[doi:10.11731/j.issn.1673-193x.2018.12.020]
 LI Hua,ZHU Xia.Research on quantitative analysis method for hidden trouble factors of electrical fire in highrise buildings[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):124.[doi:10.11731/j.issn.1673-193x.2018.12.020]
[5]王博,李阳,司永轩,等.ZR-BV单芯铜线过电流故障电弧熔痕特征研究[J].中国安全生产科学技术,2019,15(12):41.[doi:10.11731/j.issn.1673-193x.2019.12.007]
 WANG Bo,LI Yang,SI Yongxuan,et al.Study on characteristics of arc melting trace in over current fault of ZR-BV singlecore copper wire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(8):41.[doi:10.11731/j.issn.1673-193x.2019.12.007]

备注/Memo

备注/Memo:
收稿日期: 2020-03-29
* 基金项目: 中国人民警察大学创新实验平台专项项目(2019sycxpd001)
作者简介: 荣彦超,硕士研究生,主要研究方向为电气火灾物证鉴定。
通信作者: 李阳,博士研究生,副教授,主要研究方向为电气火灾调查及物证鉴定。
更新日期/Last Update: 2020-09-10