|本期目录/Table of Contents|

[1]练章华,李帅,牟易升,等.双金属衬里复合管堆焊及对接焊有限元力学分析*[J].中国安全生产科学技术,2020,16(11):53-58.[doi:10.11731/j.issn.1673-193x.2020.11.008]
 LIAN Zhanghua,LI Shuai,MOU Yisheng,et al.Finite element mechanical analysis on surfacing and butt welding of bimetal lined composite pipe[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(11):53-58.[doi:10.11731/j.issn.1673-193x.2020.11.008]
点击复制

双金属衬里复合管堆焊及对接焊有限元力学分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年11期
页码:
53-58
栏目:
职业安全卫生管理与技术
出版日期:
2020-11-30

文章信息/Info

Title:
Finite element mechanical analysis on surfacing and butt welding of bimetal lined composite pipe
文章编号:
1673-193X(2020)-11-0053-06
作者:
练章华李帅牟易升李泳宏赵朝阳陈俊文
(1.西南石油大学 油气藏地质及开发工程国家重点实验室,四川 成都 610500;
2.中国石油工程建设有限公司西南分公司,四川 成都 610041)
Author(s):
LIAN Zhanghua LI Shuai MOU Yisheng LI Yonghong ZHAO Zhaoyang CHEN Junwen
(1.State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering,Southwest Petroleum University,Chengdu Sichuan 610500,China;
2.China Petroleum Engineering & Construction Corp.Southwest Company,Chengdu Sichuan 610041,China)
关键词:
双金属衬里复合管堆焊对接焊热处理残余应力
Keywords:
bimetal lined composite pipe surfacing butt welding heat treatment residual stress
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2020.11.008
文献标志码:
A
摘要:
为研究双金属衬里复合管堆焊及对接焊焊接后焊接处应力变化,针对Φ89(8+2) mm尺寸衬里复合管,基于热-力耦合理论,建立瞬态热-固耦合管端堆焊与对接焊V型槽环焊缝轴对称力学模型。探讨衬里复合管堆焊及对接焊过程中整个焊肉及热影响区的应力变化并对应力区进行完整、详细分析。结果表明:衬里复合管焊接完成后焊区产生较高的残余应力,最高达463.47 MPa;热处理工艺消除了90%的残余应力,然而投入使用的复合管仍然存在3个高应力区:对接焊焊肉内、过渡区中靠近对接焊焊肉的基管上及2次堆焊起始点,其中应力最大的位置在2次堆焊的起始点,最高达46.63 MPa。建立的模型和计算结果可为实际工况下衬里复合管焊接部位的力学性质研究提供参考。
Abstract:
In order to study the stress change at the welded joint of bimetallic lined composite pipe after surfacing and butt welding,an axisymmetric mechanical model of Vtype groove girth weld in the transient thermalsolid coupling pipe end surfacing and butt welding was established based on the thermal mechanical coupling theory for the lined composite pipe with size of Φ 89 (8+2) mm.The stress change of the whole welding meat and heat affected zone during the surfacing and butt welding process of lined composite pipe were investigated,and the stress zone was analyzed in detail.The results showed that after the welding of lined composite pipe,the higher residual stress generated in the welding area,up to 463.47 MPa.The heat treatment process eliminated 90% of the residual stress,but there were still three high stress zones in the used composite pipe.for the positions in the butt welding meat,on the base pipe near the butt welding meat in the transition zone and at the starting point of second surfacing,the position with the largest stress was the starting point of second surfacing,with the maximum value of 46.63 MPa.The established model and calculation results can provide reference for the study on mechanical properties of welded joint on the lined composite pipe under actual working conditions.

参考文献/References:

[1]杜清松,曾德智,杨斌,等.双金属复合管塑性成型有限元模拟[J].天然气工业,2008(9):64-66,138. DU Qingsong,ZENG Dezhi,YANG Bin,et al.Finite element simulation of plastic forming of bimetallic composite pipe [J].Natural Gas Industry,2008(9):64-66,138.
[2]李磊,邝献任,姬蕊,等.某油田316L/L360NB机械式双金属复合管失效行为及原因分析[J].表面技术,2018,47(6):224-231. LI Lei,KUANG Xianren,JI Rui,et al.Failure behavior and cause analysis of 316L/L360NB mechanical bimetal composite pipe in an oilfield [J].Surface Technology,2018,47(6):224-231.
[3]曹学文,彭文山,胥锟,等.双金属复合管内衬层液固两相流冲蚀机理[J].油气储运,2017,36(6):739-746. CAO Xuewen,PENG Wenshan,XU Kun,et al.Erosion mechanism of liquid-solid two-phase flow in inner liner of bimetal composite pipe [J].Oil and Gas Storage and Transportation,2017,36(6):739-746.
[4]鲍明昱,任呈强,郑云萍,等.基于点蚀的316L不锈钢在酸性气田环境中的适应性评价[J].材料导报,2016,30(17):10-15,35. BAO Mingyu,REN Chengqiang,ZHENG Yunping,et al.Suitability evaluation of 316L stainless steel based on pitting corrosion in acid gas field environment [J].Materials Report,2016,30(17):10-15,35.
[5]KARLSSON R I,JOSEFSON B L.Three-dimensional finite element analysis of temperatures and stresses in a single-pass butt-welded pipe [J].Journal of Pressure Vessel Technology,1990,112(1):427-431.
[6]TERASAKI T,AKIYAMA T,ISHIMURA T.New method for estimating residual stresses in pipe made by surfacing weld [J].Transactions of the Japan Society of Mechanical Engineers,1993,59(3):365-371.
[7]吕世雄,王廷,冯吉才.20G/316L双金属复合管弧焊接头组织与性能[J].焊接学报,2009,30(4):93-96,117-118. LYU Shixiong,WANG Ting,FENG Jicai.Structure and performance of 20G/316L bimetal compound pipe arc welding joint [J].Journal of Welding,2009,30(4):93-96,117-118.
[8]GOU R B,DAN W J,QIU F,et al.Welding residual stress measurement of an urban buried gas pipeline by X-ray diffraction method [J].Insight-Non-Destructive Testing and Condition Monitoring,2015,57(10):556-561.
[9]管松军,孙利国,魏小平.N08825复合管焊接接头残余应力调整技术研究[J].石油工程建设,2015,41(5):79-82. GUAN Songjun,SUN Liguo,WEI Xiaoping.Study on adjustment technology of residual stress in welding joint of N08825 composite pipe [J].Petroleum Engineering Construction,2015,41(5):79-82.
[10]税正伟,杨燕,杨昕,等.L245NCS/316L双金属复合管焊接接头组织性能分析[J].材料导报,2016,30(S2):499-503. SHUI Zhengwei,YANG Yan,YANG Xin,et al.Microstructure and properties of welded joints of L245 NCS/316L bimetal composite pipe [J].Materials Report,2016,30(S2):499-503.
[11]FU A Q,KUANG X R,HAN Y,et al.Failure analysis of girth weld cracking of mechanically lined pipe used in gasfield gathering system [J].Engineering Failure Analysis,2016,68:64-75.
[12]ODEID O,ALFANO G,BAHAI H.Thermo-mechanical analysis of a single-pass weld overlay and girth welding in lined pipe [J].Journal of Materials Engineering and Performance,2017,26(8):3861-3876.
[13]ODEID O,ALFANO G,BAHAI H,et al.A parametric study of thermal and residual stress fields in lined pipe welding [J].Thermal Science and Engineering Progress,2017,4:205-218.
[14]ODEID O,ALFANO G,BAHAI H,et al.Experimental and numerical thermo -mechanical analysis of welding in a lined pipe [J].Journal of Manufacturing Processes,2018,32:857-872.
[15]MOU Y S,LIAN Z H,ZHANG Q,et al.Residual strength evaluation of first-stage absorber with weld considering corrosion and thermal stress [J].Journal of Pressure Vessel Technology,2020,142(4):041503.
[16]RUGGIERI C,SARZOSA D F B,HIPPERT E.Fracture resistance testing of pipeline girth welds with strength undermatch using low-constraint specimens [J].Procedia Structural Integrity,2019,18:36-45.
[17]王能庆.616装甲钢焊接残余应力与变形有限元分析[D].重庆:重庆大学,2012.
[18]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2020-09-20
* 基金项目: 国家自然科学基金面上项目(51974271);国家自然科学基金联合基金项目(U19A209)
作者简介: 练章华,博士,教授,主要研究方向为管柱力学、CAD/CAE/CFD、地应力、钻井完井技术。
通信作者: 李帅,硕士研究生,主要研究方向为油气井工程力学。
更新日期/Last Update: 2020-12-06