|本期目录/Table of Contents|

[1]赵博,苏亚中,丛巍,等.疏松砂岩油气藏出砂风险及机理离散元分析*[J].中国安全生产科学技术,2020,16(11):59-65.[doi:10.11731/j.issn.1673-193x.2020.11.009]
 ZHAO Bo,SU Yazhong,CONG Wei,et al.Discrete element analysis on sand production risk and mechanism in unconsolidated sandstone oil and gas reservoir[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(11):59-65.[doi:10.11731/j.issn.1673-193x.2020.11.009]
点击复制

疏松砂岩油气藏出砂风险及机理离散元分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年11期
页码:
59-65
栏目:
职业安全卫生管理与技术
出版日期:
2020-11-30

文章信息/Info

Title:
Discrete element analysis on sand production risk and mechanism in unconsolidated sandstone oil and gas reservoir
文章编号:
1673-193X(2020)-11-0059-07
作者:
赵博苏亚中丛巍孙恒博董晓渊胡铭寰李岳
(1.中国石油大学(华东) 石油工业训练中心,山东 青岛 266580;
2.青海油田采油一厂,青海 海西 817000)
Author(s):
ZHAO Bo SU Yazhong CONG Wei SUN Hengbo DONG Xiaoyuan HU Minghuan LI Yue
(1.Oil Industry Training Centre,China University of Petroleum (East China),Qingdao Shandong 266580,China;
2.NO.1 Oil Production Plant of Qinghai Oilfield,Haixi Qinghai 817000,China)
关键词:
疏松砂岩出砂离散元生产压差流体黏度内聚力数值模拟
Keywords:
unconsolidated sandstone sand production discrete element production pressure difference fluid viscosity cohesion numerical simulation
分类号:
X937;TE357
DOI:
10.11731/j.issn.1673-193x.2020.11.009
文献标志码:
A
摘要:
为了进一步了解疏松砂岩储层开发过程中的出砂机理,基于PFC3D平台构建离散元模型用于分析疏松砂岩储层出砂风险,探究生产压差等因素对地层出砂的影响。结果表明:较高生产压差下地层流体流速较快,流体对砂粒的拖曳力较大,出砂较严重,生产压差为4.5 MPa时出砂量比3.0,1.5 MPa分别高34.86%和75.45%;地层流体黏度的升高会降低其对砂粒的拖曳,一定程度上减弱出砂程度,流体黏度在1 000 mPa·s时出砂量比100,10 mPa·s下分别低42.50%和54.27%;较大地应力差异条件下砂粒间相互作用较强,砂粒更易脱离岩石骨架而出砂,地应力差异系数为1.75时出砂量是1.25时的2.51倍;另外,内聚力较低的储层砂粒间黏聚力较低,相同生产条件下更易出砂。研究结果可用于预测疏松砂岩储层出砂及定制防砂方案。
Abstract:
In order to further understand the sand production mechanism during the development of unconsolidated sandstone reservoir,a discrete element model for analyzing the risk of sand production in the f unconsolidated sandstone reservoirs was constructed on the basis of PFC3D platform,and the influence of production pressure difference and other factors on the sand production of stratum was explored.The results showed that when the production pressure difference was high,the formation fluid velocity was faster,the drag force of fluid on the sand particles was larger,and the sand production was more serious.When the production pressure difference was 4.5 MPa,the sand production amount was 34.68% and 75.45% higher than that when the production pressure difference was 3.0 MPa and 1.5 MPa,respectively.The increase of formation fluid viscosity would reduce its drag force on the sand particles and weaken the sand production degree to a certain extent,and when the fluid viscosity was 1 000 mPa·s,the sand production amount was 42.50% and 54.27% lower than that when the fluid viscosity was 100 mPa·s and 10 mPa·s,respectively.Under the condition of larger ground stress difference,the interaction between sand particles was stronger,so the sand particles were easier to break away from the rock skeleton and produce sand,and when the ground stress difference coefficient was 1.75,the sand production amount was 2.51 times that when the ground stress difference coefficient was 1.25;In addition,the reservoir with lower cohesion had the lower adhesion between sand particles and was easier to produce sand under the same production conditions.The research results can provide references for predicting the sand production in unconsolidated sandstone reservoirs and customizing the sand prevention schemes.

参考文献/References:

[1]罗杨,徐进杰,王建忠,等.致密油水平井出砂机理[J].大庆石油地质与开发,2018,37(3):168-174. LUO Yang,XU Jinjie,WANG Jianzhong,et al.Sand production mechanism for the horizontal wells in the tight oil[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(3):168-174.
[2]李伟忠.金家油田低渗敏感稠油油藏适度出砂室内评价[J].断块油气田,2019,26(6):810-815. LI Weizhong.Laboratory evaluation on reasonable sand production of low permeability sensitive heavy oil reservoir in Jinjia oilfield[J].FaultBlock Oil & Gas Field,2019,26(6):810-815.
[3]吴燕,唐斌,王明,等.高压裂缝性致密砂岩气藏出砂影响因素及防治-以塔里木盆地迪那2气藏为例[J].石油钻采工艺,2019,41(5):663-669. WU Yan,TANG Bin,WANG Ming,et al.Influence factors and control of sand production in ultra-high pressure fractured tight sandstone gas reservoirs:A case study on Dina 2 gas reservoir in the Tarim Basin[J].Oil Drilling & Production Technology,2019,41(5):663-669.
[4]李进,许杰,龚宁,等.渤海油田疏松砂岩储层动态出砂预测[J].西南石油大学学报(自然科学版),2019,41(1):119-128. LI Jin,XU Jie,GONG Ning,et al.Prediction of dynamic sanding in unconsolidated sandstone reservoirs of Bohai Oilfield[J].Journal of Southwest Petroleum University(Science & Technology Edition) 2019,41(1):119-128.
[5]韩志磊,崔云江,许赛男,等.疏松砂岩储层出砂分析测井评价新方法[J].中国海上油气,2019,31(1):77-85. HAN Zhilei,CUI Yunjiang,XU Sainan,et al.A new method of log evaluation for sand production in unconsolidated sandstone reservoirs[J].China Offshore Oil and Gas,2019,31(1):77-85.
[6]SONG Y Q,RANJITH P G,WU B L.Development and experimental validation of a computational fluid dynamics-discrete element method sand production model[J].Journal of Natural Gas Science and Engineering,2020,73:1-13.
[7]DENG F C,YAN C L,JIA S P,et al.Influence of sand production in an unconsolidated sandstone reservoir in a deepwater gas field[J].Journal of Energy Resources Technology,2019,141(9):1-11.
[8]YAN M,DENG J G,YU B H,et al.Comparative study on sanding characteristics between weakly consolidated sandstones and unconsolidated sandstones[J].Journal of Natural Gas Science and Engineering,2020,76:1-12.
[9]SHABDIROVA A,HOPMINH N,ZHAO Y.A sand production prediction model for weak sandstone reservoir in Kazakhstan[J].Journal of Rock Mechanics and Geotechnical Engineering,2019,11(4):760-769.
[10]GRAVANIS E,SARRIS E,PAPANASTASIOU P.Hydro-mechanical erosion models for sand production[J].International Journal for Numerical and Analytical Methods in Geomechanics,2015,39(18):2017-2036.
[11]ZHU H,ZHOU Z,YANG R,et al.Discrete particle simulation of particulate systems:theoretical developments[J].Chemical Engineering Science,2007,62(13):3378-3396.
[12]ZENG J S,LI H,ZHANG D X.Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method[J].Journal of Natural Gas Science and Engineering,2016,33:264-277.
[13]李庆超,程远方,李强,等.水合物储层安全钻井液密度下限确定方法[J].大庆石油地质与开发,2018,37(5):168-174. LI Qingchao,CHENG Yuanfang,LI Qiang,et al.Determination method of the safe lower limit of the drilling fluid density in hydrate-bearing formations[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(5):168-174.
[14]陈磊,李长俊,陈尚周.球阀处硫颗粒运移沉降规律数值模拟研究[J].中国安全生产科学技术,2016,12(1):90-95. CHEN Lei,LI Changjun,CHEN Shangzhou.Numerical simulation on laws of movement and settlement for sulfur particles in ball valve[J].Journal of Safety Science and Technology,2016,12(1):90-95.
[15]徐小敏,凌道盛,陈云敏,等.基于线性接触模型的颗粒材料细-宏观弹性常数相关关系研究[J].岩土工程学报,2010,32(7):991-998. XU Xiaomin,LING Daosheng,CHEN Yunmin,et al.Correlation of microscopic and macroscopic elastic constants of granular materials based on linear contact model[J].Chinese Journal of Geotechnical Engineering,2010,32(7):991-998.

相似文献/References:

[1]张智,杨昆,刘召,等.注水出砂井环空带压安全管控*[J].中国安全生产科学技术,2023,19(7):128.[doi:10.11731/j.issn.1673-193x.2023.07.019]
 ZHANG Zhi,YANG Kun,LIU Zhao,et al.Safety management and control of sustained casing pressure (SCP) in water injection wells with sand production[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(11):128.[doi:10.11731/j.issn.1673-193x.2023.07.019]

备注/Memo

备注/Memo:
收稿日期: 2020-07-18
* 基金项目: 国家重点研发计划项目(2016YFC0304005);国家重点基础研究发展计划项目(2015CB251201)
作者简介: 赵博,硕士,工程师,主要研究方向为石油行业的仪器研发。
更新日期/Last Update: 2020-12-06