|本期目录/Table of Contents|

[1]齐彦萌,张芳源,王巍浩.基于HoekBrown强度准则深埋隧道掌子面稳定性分析*[J].中国安全生产科学技术,2020,16(6):134-139.[doi:10.11731/j.issn.1673-193x.2020.06.022]
 QI Yanmeng,ZHANG Fangyuan,WANG Weihao.Stability analysis of deepburied tunnel face based on HoekBrown strength criterion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(6):134-139.[doi:10.11731/j.issn.1673-193x.2020.06.022]
点击复制

基于HoekBrown强度准则深埋隧道掌子面稳定性分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年6期
页码:
134-139
栏目:
职业安全卫生管理与技术
出版日期:
2020-06-30

文章信息/Info

Title:
Stability analysis of deepburied tunnel face based on HoekBrown strength criterion
文章编号:
1673-193X(2020)-06-0134-06
作者:
齐彦萌张芳源王巍浩
(北京交通大学 海滨学院,河北 黄骅 061199)
Author(s):
QI Yanmeng ZHANG Fangyuan WANG Weihao
(Haibin College,Beijing Jiaotong University,Huanghua Hebei 061199,China)
关键词:
深埋隧道HoekBrown掌子面稳定性极限支护力
Keywords:
deepburied tunnel HoekBrown tunnel face stability limit support force
分类号:
X947;U25
DOI:
10.11731/j.issn.1673-193x.2020.06.022
文献标志码:
A
摘要:
为了研究孔隙水压力作用下深埋隧道掌子面的稳定性,构建了深埋盾构隧道的二维刚性有限平动多块体的破坏模式,并引入了HoekBrown强度准则。利用极限分析得到掌子面前方土体的内部耗散能和外力做的功,利用HoekBrown强度准则推导得到极限支护力的目标函数,通过MATLAB数值软件的规划求解得到支护力的解,和既有文献中的成果对比,2种方法得到解的最大误差为6.7%,验证了HoekBrown强度准则的有效性。对各个岩体参数下深埋隧道掌子面极限支护力的变化规律进行分析,结果表明:深埋隧道掌子面前方的极限支护力随着扰动因子D和孔隙水压力系数ru的增大而增大,随着地质强度指标GSI和参数mi的增大而减小;破坏范围随着参数mi和孔隙水压力系数ru的增大而减小,而随着地质强度指标GSI和扰动因子D的增大而增大。研究结果可为岩质地层中深埋盾构隧道掌子面支护力的设计提供理论依据。
Abstract:
In order to investigate the stability of deep tunnel face witn the pore water pressure,a twodimensional rigid finite translational multi block failure mode of deep shield tunnel was constructed,and the Hoek Brown strength criterion was introduced.The internal dissipative energy and the work done by the external force of the soil in front of the tunnel were obtained by using the limit analysis,and the objective function of the limit support force was derived by using the HoekBrown strength criterion.The solution of support force was obtained by using the MATLAB numerical software,and it was compared with the achievement in the existing literature.The maximum error between the solutions obtained by two methods was 6.7%,which verified the effectiveness of the HoekBrown strength criterion.The variation laws of the limit support force of deepburied tunnel face under various rock mass parameters were analyzed,and the results showed that the limit support force in front of the deepburied tunnel face increased with the increase of the disturbance factor D and the pore water pressure coefficient ru,and decreased with the increase of the geological strength index GSI and the parameter mi.The failure range decreased with the increase of the parameter mi and the pore water pressure coefficient ru,and increased with the increase of the geological strength index GSI and the disturbance factor D.The results can provide theoretical basis for the design of support force on the deepburied shield tunnel face in the rock stratum.

参考文献/References:

[1]李得建,赵炼恒,杨峰,等.非线性破坏准则下浅埋隧道掌子面三维被动稳定性能耗分析改进方法[J].岩石力学与工程学报,2016,35(4),743-752. LI Dejian,ZHAO Lianheng,YANG Feng,et al.Three-dimensional stability analysis of passive failure on shallow tunnel face based on the nonlinear failure criterion[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(4):743-752.
[2]贺志军,陈运鹏,李得建,等.纵向倾斜地表盾构隧道掌子面三维挤出破坏分析[J].湖南大学学报(自然科学版),2017,44(9):128-136. HE Zhijun,CHEN Yunpeng,LI Dejian,et al.Analysis on three-dimensional extrusion failure of shield tunnel face with longitudinal declined ground[J].Journal of Hunan University (Natural Sciences),2017,44(9):128-136.
[3]黄阜,潘秋景,张道兵.孔隙水压力作用下盾构隧道开挖面支护力上限研究[J].工程力学,2017,34(7):108-116. HUANG Fu,PAN Qiujing,ZHANG Daobing.Study on the upper bound solution of supporting pressure for shield tunnel face subjected to pore water pressure[J].Engineering Mechanics,2017,34(7):108-116.
[4]姚海波,杜宇,张文选,等.油气田瓦斯隧道开挖掌子面围岩安全厚度研究[J].中国安全生产科学技术,2020,16(1):168-174. YAO Haibo,DU Yu,ZHANG Wenxuan,et al.Study on safety thickness of surrounding rock in excavation face of gas tunnel in oil and gas field[J].Journal of Safety Science and Technology,2020,16(1):168-174.
[5]CHAMBON P,CORTE J F.Shallow tunnels in cohesionless soil:stability of tunnel face[J].Journal of Geotechnical Engineering,1994,120(7):1148-1165.
[6]LEE I M.NAM S W.The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J].Tunnelling and Underground Space Technology,2001,16(1):31-40.
[7]MOLLON D D G,SOUBRA A H.Face stability analysis of circular tunnels driven by a pressurized shield[J].Journal of Geotechnical and Geoenvironmental Engineering,2009,136(1):215-229.
[8]于丽,吕城,段儒禹,等.考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J].岩土力学,2020,41 (1):194-204. YU Li,LYU Cheng,DUAN Ruyu,et al.Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion[J].Rock and Soil Mechanics,2020,41(1):194-204.
[9]KIM S R J,YU H S.Limit analysis of soil slopes subjected to porewater pressure[J].Journal of Geotechnical and Geoenvironmental Engineering,1999,125(1):49-58.
[10]LI Z W,YANG X L.Active earth thrust considering tension crack,pore-water pressure and soil nonlinearity[J].KSCE Journal of Civil Engineering,2018,23(1):56-62.
[11]FRALDI M,GUARRACINO F.Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections[J].International Journal of Solids and Structures,2010,47(2):216-223.
[12]YANG X L,LI Z W.Upper bound analysis of 3D static and seismic active earth pressure[J].Soil Dynamics and Earthquake Engineering,2018,108:18-28.
[13]DU D,DIAS D,YANG X.Analysis of earth pressure for shallow square tunnels in anisotropic and non-homogeneous soils[J].Computers and Geotechnics,2018,104:226-236.
[14]HOEK E,BROWN E.Underground excavations in rock[D].London:Institute of Mining and Metallurgy,1980.
[15]HOEK E,CARRANZA T C,CORKUM BEA.Hoek-Brown failure criterion-edition[C]// In Proceedings of the 5th North American Rock Mechanics Symposium.Toronto,2002.
[16]李姝,吕城.考虑孔隙水压力和非线性M-C准则的深埋隧道掌子面稳定性分析[J].公路,2019,64 (12):322-327. LI Shu,LYU Cheng.Stability analysis of tunnel surface considering pore water pressure and nonlinear M-C criterion[J].Highway,2019,64(12):322-327.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2020-04-05
* 基金项目: 中国铁路总公司科技研究开发计划课题(2017G007-G-1)
作者简介: 齐彦萌,硕士,讲师,主要研究方向为隧道施工与设计。
通信作者: 张芳源,硕士,讲师,主要研究方向为隧道设计。
更新日期/Last Update: 2020-07-07