|本期目录/Table of Contents|

[1]王宗直,路堃,陈涛,等.基于格子气模型的北京地铁站内人流移动分析[J].中国安全生产科学技术,2018,14(5):31-35.[doi:10.11731/j.issn.1673-193x.2018.05.005]
 WANG Zongzhi,LU Kun,CHEN Tao,et al.Analysis on pedestrian flow movement in a subway station of Beijing based on lattice gas model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(5):31-35.[doi:10.11731/j.issn.1673-193x.2018.05.005]
点击复制

基于格子气模型的北京地铁站内人流移动分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年5期
页码:
31-35
栏目:
学术论著
出版日期:
2018-05-31

文章信息/Info

Title:
Analysis on pedestrian flow movement in a subway station of Beijing based on lattice gas model
文章编号:
1673-193X(2018)-05-0031-05
作者:
王宗直1路堃2陈涛1姚娟娟2
(1.清华大学 工程物理系 公共安全研究院,北京 100084;2.北京市地铁运营有限公司地铁运营技术研发中心 地铁运营安全保障技术北京市重点实验室,北京 102208)
Author(s):
WANG Zongzhi1 LU Kun2 CHEN Tao1 YAO Juanjuan2
(1.Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;2.Beijing Key Laboratory of Subway Operation Safety Technology, Subway Operation Technology R&D Center, Beijing Subway Operation Co., Ltd., Beijing, 102208, China)
关键词:
计算机仿真行人流格子气模型北京地铁交通安全
Keywords:
computer simulation pedestrian flow lattice gas model Beijing subway traffic safety
分类号:
X951
DOI:
10.11731/j.issn.1673-193x.2018.05.005
文献标志码:
A
摘要:
为研究因超出原有设计人流量阈值引发的安全隐患问题,提出了一种基于动态参数的模块化格子气模型。对北京地铁惠新西街南口站约4 000 m2的面积进行建模,对比了实地拍摄视频数据的情况与模拟仿真结果,确保了较好的精度。通过输入闸机口和列车进入站台的人流信息,给出短时间站内人流的移动及分布情况。发现了惠新西街南口站设计上的不足与缺陷,提出了对类似站台的设计及模型应用的建议。结果表明:十号线与五号线之间换乘通道通行能力较低,换乘通道口存在拥堵,具有安全隐患。拓宽换乘通道2 m能够使车站通行能力大大提高,基本满足目前该站在工作日下班高峰期的换乘需求。
Abstract:
To study the problem of potential safety hazard caused by exceeding the original designed threshold of pedestrian flow, a modular lattice gas model based on dynamic parameters was put forward. The modeling was carried out on an area about four thousand square meters in Huixinxijie Nankou station of Beijing subway, and the simulation results were compared with the data of on-site shot video to ensure the better accuracy. The movement and distribution situation of pedestrian flow in the station in a short period were obtained by inputting the information of pedestrian flow entering the platform through the fare gate and the train. The shortages and defects in the design of Huixinxijie Nankou station were found out, and the suggestions for the design of similar platform and the application of the model were put forward.

参考文献/References:

[1]MURAMATSU M, IRIE T, NAGATANI T. Jamming transition in pedestrian counter flow[J]. Physica A Statistical Mechanics & Its Applications, 1999, 267(S 3-4):487-498.
[2]MURAMATSU M, NAGATANI T. Jamming transition in two-dimensional pedestrian traffic[J]. Physica A Statistical Mechanics & Its Applications, 2000, 275(1-2):281-291.
[3]JIANG R, WU Q S. Pedestrian behaviors in a lattice gas model with large maximum velocity[J]. Physica A Statistical Mechanics & Its Applications, 2007, 373(36):683-693.
[4]GUO R Y, HUANG H J. A mobile lattice gas model for simulating pedestrian evacuation[J]. Physica A Statistical Mechanics & Its Applications, 2008, 387(2-3):580-586.
[5]HARTMANN D. Adaptive pedestrian dynamics based on geodesics[J]. New Journal of Physics, 2010, 12(4):1155-1208.
[6]YU X, CHANG R, ZHANG C. Evacuation of pedestrians using lattice gas model and floor field model[C] //International Conference on Audio, Language and Image Processing, IEEE, 2015.
[7]ZHENG Y, XI X, ZHUANG Y, et al. Dynamic parameters cellular automaton model for passengers in subway[J]. Tsinghua Science and Technology, 2015, 20(6): 594-601.
[8]HAN Y, LIU H. Modified social force model based on information transmission toward crowd evacuation simulation[J]. Physica A: Statistical Mechanics and its Applications, 2017(469): 499-509.
[9]PEREIRA L A, BURGARELLI D, DUCZMAL L H, et al. Emergency evacuation models based on cellular automata with route changes and group fields[J]. Physica A: Statistical Mechanics and its Applications, 2017(473): 97-110.
[10]ANTONINI G, BIERLAIRE M, WEBER M. Discrete choice models of pedestrian walking behavior[J]. Transportation Research Part B: Methodological, 2006, 40(8): 667-687.
[11]PEREIRA L A, DUEZMAL L H, CRUZ F R B. Congested emergency evacuation of a population using a finite automata approach[J]. Safety science, 2013, 51(1): 267-272.
[12]YANG X, DONG H, YAO X. Passenger distribution modelling at the subway platform based on ant colony optimization algorithm[J]. Simulation Modelling Practice & Theory, 2017(77):228-244.
[13]史聪灵, 钟茂华, 张岚,等. 地铁换乘车站客流疏运模拟及风险分析(2)——单通道换乘车站[J]. 中国安全生产科学技术, 2011, 7(8):21-28. SHI Congling, ZHONG Maohua, ZHANG Lan, et al. Simulation and risk Analysis on passenger transportation of metro transfer station(2)——Single passage transferring Station[J]. Journal of Safety Science & Technology, 2011, 7(8):21-28.
[14]陈海涛, 刘占, 靳红雨,等. 双出口疏散吸引区域模型建立与模拟分析[J]. 中国安全生产科学技术, 2017, 13(7):55-61. CHEN Haitao, LIU Zhan, JIN Hongyu, et al. Modeling and simulation analysis on evacuation attraction region model for double exits[J]. Journal of Safety Science & Technology, 2017, 13(7):55-61.
[15]YE J, CHEN X, JIAN N. Impact analysis of human factors on pedestrian traffic characteristics[J]. Fire Safety Journal, 2012(52):46-54.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(71373139,71673163);“十二五”国家科技支撑计划(2015BAK10B02);北京市科委项目(Z161100001116010)
更新日期/Last Update: 2018-06-19