|本期目录/Table of Contents|

[1]张云明.丙烷/空气拉伸火焰传播稳定性实验研究[J].中国安全生产科学技术,2017,13(7):42-47.[doi:10.11731/j.issn.1673-193x.2017.07.007]
 ZHANG Yunming.Experimental study on stability of propane/air stretched flame[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):42-47.[doi:10.11731/j.issn.1673-193x.2017.07.007]
点击复制

丙烷/空气拉伸火焰传播稳定性实验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年7期
页码:
42-47
栏目:
学术论著
出版日期:
2017-07-31

文章信息/Info

Title:
Experimental study on stability of propane/air stretched flame
文章编号:
1673-193X(2017)-07-0042-06
作者:
张云明
(中国人民武装警察部队学院灭火救援技术公安部重点实验室,河北 廊坊 065000)
Author(s):
ZHANG Yunming
(Key Laboratory of Fire Fighting and Rescuing Technology of Ministry of Public Security, Chinese People's Armed Police Force Academy, Langfang Hebei 065000, China)
关键词:
丙烷预混火焰火焰传播拉伸率稳定性
Keywords:
propane premixed flame flame propagation stretch rate stability
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2017.07.007
文献标志码:
A
摘要:
为了揭示空气中丙烷火焰传播特性,利用纹影系统记录了预混气体小能量点火条件下火焰形成与传播过程,得到了火焰表面的微观结构特征,分析了混合气体火焰的稳定性及其影响因素。结果表明:丙烷/空气混合物火焰发展过程及其表面微观特征与浓度直接相关;当混合物浓度接近爆炸上下限时,火焰扩展速率整体不大于0.5 m/s,燃烧区域向上漂浮,浮力成为影响火焰失稳的主导因素;当混合物浓度靠理论配比时,火焰呈规则球形扩展,火焰稳定性按照先减弱后增强的趋势发展,火焰表面褶皱的形成及演化规律是热扩散不稳定性和流体力学不稳定性共存与竞争的作用结果。
Abstract:
In order to reveal the propagation characteristics of propane flame in air, the formation and propagation processes of premixed gas flame under the condition of small energy ignition were recorded by the schlieren system. The microstructure characteristics of flame surface were obtained, and the stability and its influencing factors of premixed gas flame were analyzed. The results showed that the development process and the surface microscopic characteristics of propane/air gas mixture flame were directly related to the concentration. When the mixture concentration was close to the upper and lower limits of explosion, the flame propagation velocity was not greater than 0.5 m/s on the whole, the combustion zone floated upward, and the buoyancy dominated the flame instability. When the concentration was close to the stoichiometric ratio, the flame expanded with a regular spherical shape, and the development trend of flame stability was first weakening and then strengthening. The formation and evolu-tion laws of the flame surface fold were the results of the coexistence and competition of thermal diffusion instabil-ity and fluid dynamics instability.

参考文献/References:

[1]Kishore V R, Ravi M R, Ray A. Adiabatic burning velocity and cellular flame characteristics of H2-CO-CO2-air mixtures[J]. Combustion and Flame, 2011, 158(11): 2149-2164.
[2]汤成龙,黄佐华,何佳佳,等.丙烷-空气-稀释气层流燃烧速率测定[J].内燃机学报,2008, 26(6): 525-532. TANG Chenglong, HUANG Zuohua, HE Jiajia, et al. Measurement of laminar burning velocities and markstein lengths of propane-air-diluent premixedflame[J]. Transactions of CSICE, 2008, 26(6): 525-532.
[3]Zhang Y, Wu J, Ishizuka S. Hydrogen addition effect on laminar burning velocity, flame temperature and flame stability of a planar and a curved CH4-H2-air premixed flame[J]. International Journal of Hydrogen Energy, 2014, 34(1): 519-527.
[4]Salih A M, Chaichan M T. The effect of initial pressure and temperature upon the laminar burning velocity and flame stability for propane-air mixtures[J]. Global Advanced Research Journal of Engineering, Technology and Innovation, 2014, 3(7): 154-201.
[5]Ebaid M S, Al-Khishali K J. Measurements of the laminar burning velocity for propane: air mixtures[J]. Advances in Mechanical Engineering, 2016, 8(6): 1-17.
[6]Huzayyin AS, Moneib HA, Shehatta MS, Attia AMA. Laminar burning velocityand explosion index of LGP-air and propane-air mixtures[J]. Fuel, 2008; 87:39-57.
[7]陈先锋,孙金华,刘义,等.丙烷/空气预混火焰层流向湍流转变中微观结构的研究[J].科学通报,2006,51(24): 2920-2925. CHEN Xianfeng, SUN Jinhua, Liu Yi, et al. Study on the microstructure of propane/air premixed flame from laminar to turbulent transition[J]. Chinese Science Bulletin, 2006, 51(24): 2920-2925.
[8]Baxter M R, Lefebvre A H. Flame stabilization in high-velocity heterogeneous fuel-air mixtures[J]. Journal of Propulsion and Power, 2015, 8(6): 1138-1143.
[9]Vancoillie J, Demuynck J, Galle J, et al. A laminar burning velocity and flame thickness correlation for ethanol-air mixtures valid at spark-ignition engine conditions[J]. Fuel, 2012, 102(3): 460-469.
[10]Law C K, Jomaas G, Bechtold J K. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment[J]. Proceedings of the Combustion Institute, 2005, 30(30): 159-167.
[11]Mukaiyama K, Kuwana K. Scale effect of flame instability mechanisms on propagation velocity[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 387-391.
[12]张云明,刘庆明,宇灿,等.大能量电点火系统设计与放电特性实验研究[J].高电压技术,2014, 40(4): 1267-1274. ZHANG Yunming, LIU Qingming, YU Can, et al. Design of a big energy electric ignition system and experimental study on its spark discharge characteristics[J]. High Voltage Engineering, 2014, 40(4): 1267-1274.
[13]A S Huzayyin, H A Moneib, M S Shehatta, et al. Laminar burning velocity and explosion index of LPG-air and propane-air mixtures[J]. Fuel, 2008, 87:39-57.
[14]Bechtold J K, Matalon M. The dependence of the marstein length on stoichiometry[J]. Combustion and Flame, 2001, 127: 1906-1903.
[15]Sun C J, Sung C J, He L, et al. Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters[J]. Combustion and Flame, 1999, 118(1): 108-128.
[16]Law C K, Sung C J. Structure, aerodynamics, and geometry of premixed flamelets[J]. Progress in Energy and Combustion Science, 2000, 26(4-6): 459-505.
[17]Yap D, Peucheret S M, Megaritis A, et al. Natural gas HCCI engine operation with exhaust gas fuel reforming[J]. International Journal of Hydrogen Energy, 2006, 31(5): 587-595.
[18]Jomaas G, Law C K, Bechtold J K. On transition to cellularity in expanding spherical flames[J]. Journal of Fluid Mechanics, 2007, 583(583): 1-26.
[19]Gu X J, Haq M Z, Lawes M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures[J]. Combustion and Flame, 2000, 121(1-2): 41-58.
[20]Law C K, Kwon O C. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation[J]. International Journal of Hydrogen Energy, 2004, 29(8): 867-879.

相似文献/References:

[1]宋占兵,魏利军,吴宗之.乙炔-空气预混火焰在狭窄通道中的传播与熄灭[J].中国安全生产科学技术,2011,7(9):35.

备注/Memo

备注/Memo:
公安部技术研究计划项目(2016JSYJC52);河北省高等学校科学技术研究项目(QN2016314)
更新日期/Last Update: 2017-08-21