[1]Kishore V R, Ravi M R, Ray A. Adiabatic burning velocity and cellular flame characteristics of H2-CO-CO2-air mixtures[J]. Combustion and Flame, 2011, 158(11): 2149-2164.
[2]汤成龙,黄佐华,何佳佳,等.丙烷-空气-稀释气层流燃烧速率测定[J].内燃机学报,2008, 26(6): 525-532.
TANG Chenglong, HUANG Zuohua, HE Jiajia, et al. Measurement of laminar burning velocities and markstein lengths of propane-air-diluent premixedflame[J]. Transactions of CSICE, 2008, 26(6): 525-532.
[3]Zhang Y, Wu J, Ishizuka S. Hydrogen addition effect on laminar burning velocity, flame temperature and flame stability of a planar and a curved CH4-H2-air premixed flame[J]. International Journal of Hydrogen Energy, 2014, 34(1): 519-527.
[4]Salih A M, Chaichan M T. The effect of initial pressure and temperature upon the laminar burning velocity and flame stability for propane-air mixtures[J]. Global Advanced Research Journal of Engineering, Technology and Innovation, 2014, 3(7): 154-201.
[5]Ebaid M S, Al-Khishali K J. Measurements of the laminar burning velocity for propane: air mixtures[J]. Advances in Mechanical Engineering, 2016, 8(6): 1-17.
[6]Huzayyin AS, Moneib HA, Shehatta MS, Attia AMA. Laminar burning velocityand explosion index of LGP-air and propane-air mixtures[J]. Fuel, 2008; 87:39-57.
[7]陈先锋,孙金华,刘义,等.丙烷/空气预混火焰层流向湍流转变中微观结构的研究[J].科学通报,2006,51(24): 2920-2925.
CHEN Xianfeng, SUN Jinhua, Liu Yi, et al. Study on the microstructure of propane/air premixed flame from laminar to turbulent transition[J]. Chinese Science Bulletin, 2006, 51(24): 2920-2925.
[8]Baxter M R, Lefebvre A H. Flame stabilization in high-velocity heterogeneous fuel-air mixtures[J]. Journal of Propulsion and Power, 2015, 8(6): 1138-1143.
[9]Vancoillie J, Demuynck J, Galle J, et al. A laminar burning velocity and flame thickness correlation for ethanol-air mixtures valid at spark-ignition engine conditions[J]. Fuel, 2012, 102(3): 460-469.
[10]Law C K, Jomaas G, Bechtold J K. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment[J]. Proceedings of the Combustion Institute, 2005, 30(30): 159-167.
[11]Mukaiyama K, Kuwana K. Scale effect of flame instability mechanisms on propagation velocity[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 387-391.
[12]张云明,刘庆明,宇灿,等.大能量电点火系统设计与放电特性实验研究[J].高电压技术,2014, 40(4): 1267-1274.
ZHANG Yunming, LIU Qingming, YU Can, et al. Design of a big energy electric ignition system and experimental study on its spark discharge characteristics[J]. High Voltage Engineering, 2014, 40(4): 1267-1274.
[13]A S Huzayyin, H A Moneib, M S Shehatta, et al. Laminar burning velocity and explosion index of LPG-air and propane-air mixtures[J]. Fuel, 2008, 87:39-57.
[14]Bechtold J K, Matalon M. The dependence of the marstein length on stoichiometry[J]. Combustion and Flame, 2001, 127: 1906-1903.
[15]Sun C J, Sung C J, He L, et al. Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters[J]. Combustion and Flame, 1999, 118(1): 108-128.
[16]Law C K, Sung C J. Structure, aerodynamics, and geometry of premixed flamelets[J]. Progress in Energy and Combustion Science, 2000, 26(4-6): 459-505.
[17]Yap D, Peucheret S M, Megaritis A, et al. Natural gas HCCI engine operation with exhaust gas fuel reforming[J]. International Journal of Hydrogen Energy, 2006, 31(5): 587-595.
[18]Jomaas G, Law C K, Bechtold J K. On transition to cellularity in expanding spherical flames[J]. Journal of Fluid Mechanics, 2007, 583(583): 1-26.
[19]Gu X J, Haq M Z, Lawes M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures[J]. Combustion and Flame, 2000, 121(1-2): 41-58.
[20]Law C K, Kwon O C. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation[J]. International Journal of Hydrogen Energy, 2004, 29(8): 867-879.
[1]宋占兵,魏利军,吴宗之.乙炔-空气预混火焰在狭窄通道中的传播与熄灭[J].中国安全生产科学技术,2011,7(9):35.