|本期目录/Table of Contents|

[1]沈艳,孙红影,李丽萍.优化GM(1,N)模型在交通噪声预测中的 应用和精度分析*[J].中国安全生产科学技术,2012,8(11):27.
 SHEN Yan,SUN Hong ying,LI Li ping.Application of optimized GM (1, N) model on the forecast of traffic noise and precision analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(11):27.
点击复制

优化GM(1,N)模型在交通噪声预测中的 应用和精度分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
8
期数:
2012年11期
页码:
27
栏目:
学术论著
出版日期:
2012-11-30

文章信息/Info

Title:
Application of optimized GM (1, N) model on the forecast of traffic  noise and precision analysis
作者:
沈艳孙红影李丽萍
( 哈尔滨工程大学 理学院,哈尔滨〓150001 )
Author(s):
SHEN Yan SUN Hong yingLI Li ping
(College of Science of Harbin Engineering University, Harbin 150001, China)
关键词:
灰色系统GM(1N)模型背景值优化数值积分
Keywords:
grey system GM (1 N) model background value optimization numerical integration
分类号:
X966; N9415; TB533+4
DOI:
-
文献标志码:
A
摘要:
背景值是影响GM(1,N)模型模拟精度和预测精度的重要因素。传统灰色系统多因素GM(1,N)模型对背景值采用梯形法求积,误差较大。为了提高GM(1,N)模型的精度,基于数值分析中的逼近思想,采用数值积分中的Newton-Cores公式和Gauss-Legendre公式对背景值进行修正求积。理论分析表明该方法能够有效地提高模型的预测精度。然后将经过优化的GM(1,N)模型应用到城市道路交通噪声的预测上,模型预测值的平均误差从2913% 降低到了1108%。应用实例表明优化后的GM(1,N)模型精度比原始GM(1,1)模型精度有较大提高,验证了该优化方法的实用性和有效性,且该方法为提高模型的预测精度提供了新的途径
Abstract:
Background value is an important factor for the simulation precision and prediction accuracy of the grey system multivariate GM(1,N) model. Usually, the traditional grey system multivariate GM(1,N) model uses integral of trapezoidal method to calculate background value, unfortunately, in fact the error is large in practice. In order to improve the simulation precision and prediction accuracy, some papers published about how to build or improve the background value of grey system GM(1,1) model were studied, and based on approximation approach of numerical analysis, Newton Cores Formula and Gauss Legendre formula with higher precision were introduced to optimize the background. It showed that this method can improve the prediction accuracy effectively. Then, the optimized grey system multivariate GM(1,N) model was applied to forecast traffic noise of the city. The average relative error of forecast data by the optimized grey system multivariate GM(1,N) model deceased from original 2913% to 1108%. Application example showed that the simulation precision of optimized grey system multivariate GM(1,N) model is higher than traditional grey system GM(1,1) model. The analysis and typical examples demonstrate the validity and applicability of the optimized method on simulation precision aspect. In addition, the optimized method provides a new way to improve the prediction accuracy.

参考文献/References:

-

相似文献/References:

[1]张悦,李峰,石超,等.改进GM(1,1)模型在我国危险化学品 事故预测中的应用[J].中国安全生产科学技术,2012,8(5):96.
 ZHANG Yue,LI Feng,SHI Chao,et al.Application of improved GM (1,1) model for prediction of hazardous chemical accidents in China[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(11):96.
[2]李明洋,姜福川,陈思帆.改进欧拉法的GM(1,1)模型及其在非煤矿山事故预测中的应用[J].中国安全生产科学技术,2013,9(8):188.[doi:10.11731/j.issn.1673-193x.2013.08.035]
 LI Ming yang,JIANG Fu chuan,CHEN Si fan.The improved euler method GM(1,1) model and its application in the accident prediction of noncoal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(11):188.[doi:10.11731/j.issn.1673-193x.2013.08.035]
[3]李明洋,姜福川.基于最小二乘法的灰色GM(1,1)改进模型在非煤矿山事故预测中的应用[J].中国安全生产科学技术,2013,9(11):83.[doi:10.11731/j.issn.1673-193x.2013.11.014]
 LI Ming yang,JIANG Fu chuan.Inproved gray GM(1,1) model in the noncoal mine accident prediction based on the methed of least square[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(11):83.[doi:10.11731/j.issn.1673-193x.2013.11.014]
[4]袁朋伟,宋守信,董晓庆.基于灰色神经网络优化组合模型的火灾预测研究[J].中国安全生产科学技术,2014,10(3):119.[doi:10.11731/j.issn.1673-193x.2014.03.020]
 YUAN Peng wei,SONG Shou xin,DONG Xiao qing.Study on fire accident prediction based on optimized grey neural network combination model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(11):119.[doi:10.11731/j.issn.1673-193x.2014.03.020]
[5]尹小贝,白福利,岳仁田.基于GM(1,N)灰模型预测企业主动性安全投入[J].中国安全生产科学技术,2009,5(2):141.
 YIN Xiao bei,BAI Fu li,YUE Ren tian.Forecast of enterprises initiative investment on safety based on GM(1,N) grey model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(11):141.
[6]王如君.灰色-马尔科夫链模型在埋地油气管道腐蚀预测中的应用[J].中国安全生产科学技术,2015,11(4):102.[doi:10.11731/j.issn.1673-193X.2015.04.016]
 WANG Ru-jun,WANG Tian-yu.Application of grey Markov chain model in corrosion forecast of buried oil and gas pipelines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(11):102.[doi:10.11731/j.issn.1673-193X.2015.04.016]
[7]赵江平,丁洁,陈敬龙.基于GM-SVR的小样本条件下化工设备可靠性预测[J].中国安全生产科学技术,2019,15(1):145.[doi:10.11731/j.issn.1673-193x.2019.01.023]
 ZHAO Jiangping,DING Jie,CHEN Jinglong.Reliability prediction of chemical equipment under small sample condition based on GM and SVR[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(11):145.[doi:10.11731/j.issn.1673-193x.2019.01.023]
[8]周西华,徐丽娜,宋东平,等.大同矿区煤的导热系数灰色关联分析及预测[J].中国安全生产科学技术,2016,12(2):78.[doi:10.11731/j.issn.1673-193X.2016.02.014]
 ZHOU Xihua,XU Lina,SONG Dongping,et al.Grey relational analysis and prediction on thermal conductivity of coal in Datong mining area[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(11):78.[doi:10.11731/j.issn.1673-193X.2016.02.014]

备注/Memo

备注/Memo:
国家自然科学基金青年科学基金项目(编号:11002037)
更新日期/Last Update: 2012-11-30