|本期目录/Table of Contents|

[1]韩永华,季学伟,陈涛,等.空间阻塞对室内燃气泄漏爆炸影响研究[J].中国安全生产科学技术,2019,15(11):36-42.[doi:10.11731/j.issn.1673-193x.2019.11.006]
 HAN Yonghua,JI Xuewei,CHEN Tao,et al.Study on influence of space blocking on indoor gas leakage and explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(11):36-42.[doi:10.11731/j.issn.1673-193x.2019.11.006]
点击复制

空间阻塞对室内燃气泄漏爆炸影响研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年11期
页码:
36-42
栏目:
学术论著
出版日期:
2019-11-30

文章信息/Info

Title:
Study on influence of space blocking on indoor gas leakage and explosion
文章编号:
1673-193X(2019)-11-0036-07
作者:
韩永华季学伟陈涛贺丁吴爱枝周轶马克祥
(1.中国电子科学研究院,北京 100041;
2.北京市安全生产科学技术研究院,北京101100;
3.清华大学 工程物理系 公共安全研究院,北京 100084;
4.中国寰球工程有限公司,北京100012)
Author(s):
HAN Yonghua JI Xuewei CHEN Tao HE Ding WU Aizhi ZHOU Yi MA Kexiang
(1.China Academy of Electronics and Information Technology,Beijing 100041,China;
2.Beijing Academy of Safety Science and Technology, Beijing 101100,China;
3.Institute for Public Safety Research,Department of Engineering Physics,Tsinghua University,Beijing 100084,China;
4.China Huanqiu Contracting & Engineering Co.,LTD.,Beijing 100012,China)
关键词:
空间阻塞CFD模拟天然气泄漏爆炸
Keywords:
space blocking CFD simulation natural gas leakage explosion
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2019.11.006
文献标志码:
A
摘要:
以餐饮企业的熟食操作间为例建立物理模型,通过CFD方法模拟不同空间阻塞度下天然气泄漏爆炸情形。研究结果表明:阻塞率在99.95%~100%时,燃气浓度呈现反抛物线式上升。空间阻塞率在99.982%时(开敞面积1 m2),泄漏1 200 s,熟食操作间燃气浓度值可达6%;空间阻塞率在99.955%(开敞面积2.5 m2)~100%时,燃气爆炸后熟食操作间内产生的超压最大值均大于30 kPa;当空间阻塞率在99.991%(开敞面积0.5 m2)~100%时,设定工况下爆炸超压随空间阻塞率呈指数式增加。研究认为,空间阻塞率在99.95%以上,燃气泄漏极易形成可燃蒸汽云,发生爆炸产生冲击波超压能够毁坏建筑物,在生产和生活中,对于有燃气使用的空间,应尽可能降低空间阻塞率,以避免可能的燃气泄漏形成危险域和爆炸形成过高冲击波超压。
Abstract:
A physical model was established by taking the cooked food operation room of catering enterprises as an example,and the CFD method was used to simulate the natural gas leakage and explosion under different space blocking degrees.The results showed that when the blocking rate was in the range of 99.95%-100%,the gas concentration presented an antiparabolic rise.When the space blocking rate was 99.982% (with opening area of 1 m2),after the leakage time of 1200 s,the gas concentration value in the cooked food operation room could reach 6%.When the space blocking rate was in the range from 99.955% (with opening area of 2.5 m2) to 100%,the maximum values of overpressure generated in the cooked food operation room after the gas explosion were all greater than 30 kPa.When the space blocking rate was in the range from 99.991% (with opening area of 0.5 m2) to 100%,the explosion overpressure increased exponentially with the space blocking rate under the set working conditions.The research suggested that when the space blocking rate was above 99.95%,the gas leakage was very easy to form a flammable vapor cloud,and when the explosion occurred,the shock wave overpressure could destroy the building.In the production and living,for the spaces with gas usage,the space blocking rate should be reduced as much as possible to avoid the possible gas leakage forming the dangerous areas and the explosion forming excessive shock wave overpressure.

参考文献/References:

[1]张满可,杜前洲,彭强,等.2011—2014年我国城市燃气事故统计分析[J].煤气与热力,2016,36(1):40-46. ZHANG Manke,DU Qianzhou,PENG Qiang,et al.Statistic analysis of urban gas accidents in China from 2011 to 2014[J].Gas & Heat,2016,36(1):40-46.
[2]张甫仁,张辉,庄春龙.室内燃气泄漏浓度场变化规律研究[J].建筑科学,2010,26(2):108-113. ZHANG Furen,ZHANG Hui ,ZHUANG Chunlong.Research on variation trend of concentration field of indoor gas leakage[J].Building Science,2010,26(2):108-113.
[3]孟超,赵晶.居室天然气泄漏扩散过程仿真研究[J].中国安全生产科学技术,2011,7(5):153-158. MENG Chao,ZHAO Jing.Simulation study on diffusion process of indoor natural gas leakage[J].Journal of Safety Science and Technology,2011,7(5):153-158.
[4]庞磊,高建村,李磊,等.燃气浓度对室内燃气爆燃火焰波及范围的影响[J].高压物理学报,2014,28(1):55-60. PANG Lei,GAO Jiancun,LI Lei,et al.Influence of gas concentration on flame spread range generated from indoor deflagration of natural gas[J]. Chinese Journal of High Pressure Physics,2014,28(1):55-60.
[5]闫秋实,孙庆文,朱渊.有关居民住宅楼内燃气爆炸冲击波特性的研究[J].建筑结构,2017,47(S2):370-375. YAN Qiushi,SUN Qingwen,ZHU Yuan.Numerical simulation of gas explosion in a residential building[J].Building Structure,2017,47(S2):370-375.
[6]吴晋湘,任金枝,赵建龙,等.室内燃气火灾的数值模拟研究[J].热科学与技术,2017,16(6):503-510. WU Jinxiang,REN Jinzhi,ZHAO Jianlong,et al.Numerical simulation of compartment gaseous fire[J].Journal of Thermal Science and Technology,2017,16(6):503-510.
[7]张培红,刘牧,王晓华.民用建筑物室内燃气泄漏火灾的数值模拟[J].沈阳建筑大学学报(自然科学版),2006(4):638-642. ZHANG Peihong,LIU Mu,WANG Xiaohua.Numerical simulation of indoor gas leakage fire in civil buildings[J].Journal of Shenyang Jianzhu University (Natural Science),2006(4):638-642.
[8]JI T C,QIAN X M,YUAN M Q,et al.Case study of a natural gas explosion in Beijing,China[J].Journal of Loss Prevention in the Process Industries,2017(49):401-410.
[9]WANG D,QIAN X M,YUAN M Q,et al.Numerical simulation analysis of explosion process and destructive effect by gas explosion accident in buildings[J].Journal of Loss Prevention in the Process Industries,2017(49):215-227.
[10]薛海强,张增刚,田贯三,等.有障碍物空间可燃气体扩散规律的数值模拟[J].天然气工业,2010,30(5):119-122,151. XUE Haiqiang,ZHANG Zenggang,TIAN Guansan,et al.Numerical simulation of the diffusion law of combustible gas in space with obstacles[J].Natural gas industry,2010,30(5):119-122,151.
[11]杨凡,陶刚,张礼敬,等.障碍物对气体爆炸压力场影响数值模拟[J].中国安全生产科学技术,2013,9(2):59-63. YANG Fan,TAO Gang,ZHANG Lijing,et al.Numerical simulation on sinfluence of obstacle on the pressure field of combustible gas explosion[J].Journal of Safety Science and Technology,2013,9(2):59-63.
[12]周宁,王文秀,张国文,等.障碍物对丙烷-空气爆炸火焰加速的影响[J].爆炸与冲击,2018,38(5):1106-1114. ZHOU Ning,WANG Wenxiu,ZHANG Guowen,et al.Effect of obstacles on flame acceleration of propane-air explosion[J].Explosion and shock waves,2018,38(5):1106-1114.
[13]罗振敏,张群,王华,等.基于FLACS的受限空间瓦斯爆炸数值模拟[J].煤炭学报,2013,38(8):1381-1387. LUO Zhenmin,ZHANG Qun,WANG Hua,et al.Numerical simulation of gas explosion in confined space with FLACS[J].Journal of China Coal Society,2013,38(8):1381-1387.
[14]LAUNDER B E ,REECE G J,RODI W.Progress in the development of a Reynoldsstress turbulent closure[J],Journal of Fluid Mech,1975(68):537-566.
[15]中华人民共和国国家质量监督检验检疫总局.城镇燃气设计规范:GB 50028—2006[S].北京: 中国建筑工业出版社,2006.
[16]韩永华,季学伟,陈涛,等.北京市生产安全事故时空特征分析[J].中国安全生产科学技术,2018,14(10):181-186. HAN Yonghua,JI Xuewei,CHEN Tao,et al.Analysis on temporal and spatial characteristics of work safety accidents in Beijing[J].Journal of Safety Science and Technology,2018,14(10):181-186.
[17]中华人民共和国安全生产监督管理总局.化工企业定量风险评价导则:AQT3046—2013[S].北京:煤炭工业出版社,2013.

相似文献/References:

[1]李蓉蓉,李孜军,赵淑琪,等.基于CFD的高海拔矿山掘进面通风增氧方案优化[J].中国安全生产科学技术,2020,16(2):54.[doi:10.11731/j.issn.1673-193x.2020.02.009]
 LI Rongrong,LI Zijun,ZHAO Shuqi,et al.Optimization of aeration scheme with heading face ventilation in high altitude mine based on CFD[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(11):54.[doi:10.11731/j.issn.1673-193x.2020.02.009]

备注/Memo

备注/Memo:
收稿日期: 2019-07-23;数字出版日期: 2019-11-27
* 基金项目: 国家重点研发计划项目(2018YFC0809900);北京市科委科技计划课题(Z181100009018003,Z181100009018010 )
作者简介: 韩永华,博士,工程师,主要研究方向为城市运行安全、CFD数值模拟。
通信作者: 陈涛,博士,研究员,主要研究方向为安全应急、公共安全。
更新日期/Last Update: 2019-12-25