|本期目录/Table of Contents|

[1]李明亮,李克钢,秦庆词,等.基于改进组合赋权-TOPSIS法的岩爆倾向性评判模型[J].中国安全生产科学技术,2020,16(3):74-80.[doi:10.11731/j.issn.1673-193x.2020.03.012]
 LI Mingliang,LI Kegang,QIN Qingci,et al.Judgment model of rock burst tendency based on improved combination weightingTOPSIS method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):74-80.[doi:10.11731/j.issn.1673-193x.2020.03.012]
点击复制

基于改进组合赋权-TOPSIS法的岩爆倾向性评判模型
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年3期
页码:
74-80
栏目:
职业安全卫生管理与技术
出版日期:
2020-03-30

文章信息/Info

Title:
Judgment model of rock burst tendency based on improved combination weightingTOPSIS method
文章编号:
1673-193X(2020)-03-0074-07
作者:
李明亮李克钢秦庆词王庭张雪娅刘洋
(1.昆明理工大学 国土资源工程学院,云南 昆明 650093;
2.云南中-德蓝色矿山与特殊地下空间利用重点实验室,云南 昆明 650093)
Author(s):
LI Mingliang LI Kegang QIN Qingci WANG Ting ZHANG Xueya LIU Yang
(1.School of Land and Resources Engineering,Kunming University of Science and Technology,Kunming Yunnan 650093,China;
2.Yunnan Key Laboratory of SinoGerman Blue Mining and Utilization of Special Underground Space,Kunming Yunnan 650093,China)
关键词:
岩爆倾向性预测组合赋权最优权重TOPSIS法贴近度
Keywords:
prediction of rock burst tendency combination weighting optimal weight TOPSIS method closeness
分类号:
X936;TU457
DOI:
10.11731/j.issn.1673-193x.2020.03.012
文献标志码:
A
摘要:
针对岩爆倾向性评价模型中指标权重难以确定导致预测精度不高的问题,提出1种基于改进组合赋权-TOPSIS法的岩爆倾向预测模型。综合考虑岩爆发生条件,选取岩性条件、应力条件和围岩条件3项准则对应的15个岩爆倾向性判别指标。采用3标度法的改进层次分析法(IAHP)与熵权法(EWM)结合,消除主、客观因素影响获得最优权重,运用逼近理想解法(TOPSIS)分析评判对象与虚拟理想解的贴近程度,从而判断岩爆倾向性等级。研究结果表明:弹性能量指数Wet、动态DT参数、能量储耗指数k、T准侧和应力指数S对岩爆倾向性影响较大;该模型对岩爆倾向性预测准确率高于85%,可为类似地下岩土工程岩爆倾向性预测提供理论支撑。
Abstract:
Aiming at the problem that the weights of indexes are difficult to be determined in the evaluation model of rock burst tendency,which causes the poor prediction accuracy,a prediction model of rock burst tendency based on the improved combination weightingTOPSIS method was proposed.Considering the occurrence conditions of rock burst comprehensively,15 judgment indexes of rock burst tendency corresponding to three criteria of lithology,stress and surrounding rock conditions were selected.The improved analytic hierarchy process (IAHP) with threescale method and the entropy weight method (EWM) were combined to eliminate the influence of subjective and objective factors and obtain the optimal weight.The technique for order preference by similarity to ideal solution (TOPSIS) was used to analyze the closeness between the judgment object and the virtual ideal solution,so as to judge the grade of rock burst tendency.The results showed that the elastic energy index Wet,dynamic DT parameters,energy storage and consumption index k,T quasilateral and stress index S had great influence on the rock burst tendency,and the prediction accuracy of rock burst tendency by this model was higher than 85%,which can provide theoretical support for the prediction of rock burst tendency in the similar underground geotechnical engineering.

参考文献/References:

[1]徐琛,刘晓丽,王恩志,等.基于组合权重–理想点法的应变型岩爆五因素预测分级[J].岩土工程学报,2017,39(12):2245-2252. XU Chen,LIU Xiaoli,WANG Enzhi,et al.Prediction and classification of strain mode rock burst based on five-factor criterion and combined weight-ideal point method[J].Chinese Journal of Geotechnical Engineering,2017,39(12):2245-2252.
[2]钱七虎.岩爆、冲击地压的定义、机制、分类及其定量预测模型[J].岩土力学,2014,35(1):1-6. QIAN Qihu.Definition,mechanism,classification and quantitative forecast model for rock burst and pressure bump[J].Rock and Soil Mechanics,2014,35(1):1-6.
[3]古德生,周科平.现代金属矿业的发展主题[J].金属矿山,2012,41(7):1-8. GU Desheng,ZHOU Keping.Development theme of the modern metal Mining[J].Metal Mine,2012,41(7):1-8.
[4]王迎超,尚岳全,孙红月,等.基于熵权-理想点法的岩爆烈度预测模型及其应用[J].煤炭学报,2010,35(2):218-221. WANG Yingchao,SHANG Yuequan,SUN Hongyue,et al.Research and application of rock burst intensity prediction model based on entropy coefficient and ideal point method[J].Journal of China Coal Society,2010,35(2):218-221.
[5]蔡嗣经,张禄华,周文略.深井硬岩矿山岩爆灾害预测研究[J].中国安全生产科学技术,2005,1(5):19-22. CAI Sijing,ZHANG Luhua,ZHOU Wenlue.Research on prediction of rock burst in deep hard-rock mines[J].Journal of Safety Science and Technology,2005,1(5):19-22.
[6]王霞,段庆全.基于改进理想点解法的油气管道事故综合预测研究[J].中国安全生产科学技术,2018,14(4):119-125. WANG Xia,DUAN Qingquan.Study on comprehensive prediction of oil and gas pipeline accidents based on improved TOPSIS [J].Journal of Safety Science and Technology,2018,14(4):119-125.
[7]BARTON N R,LIEN R,LUNDE J.Engineering classification of rock masses for the design of tunnel support[J].Rock Machanics and Rock Engineering,1974,6(4):189-236.
[8]王李管,裴安磊,彭平安.地下工程岩爆灾害预测的属性综合评价模型[J].科技导报,2014,32(8):22-26. WANG Liguan,PEI Anlei,PENG Ping’an.Attribute synthetic evaluation model for rock burst disaster prediction in underground engineering[J].Science & Technology Review,2014,32(8):22-26.
[9]贾义鹏,吕庆,尚岳全.基于粒子群算法和广义回归神经网络的岩爆预测[J].岩石力学与工程学报,2013,32(2):343-348. JIA Yipeng,LYU Qing,SHANG Yuequan.Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(2):343-348.
[10]裴启涛,李海波,刘亚群,等.基于组合赋权的岩爆倾向性预测灰评估模型及应用[J].岩土力学,2014,35(S1):49-56. PEI Qitao,LI Haibo,LIU Yaqun,et al.A grey evaluation model for predicting rock burst proneness based on combination weight and its application[J].Rock and Soil Mechanics,2014,35(S1):49-56.
[11]李宁,王李管,贾明涛.基于粗糙集理论和支持向量机的岩爆预测[J].中南大学学报(自然科学版),2017,48(5):1268-1275. LI Ning,WANG Liguan,JIA Mingtao.Rockburst prediction based on rough set theory and support vector machine[J].Journal of Central South University (Science and Technology),2017,48(5):1268-1275.
[12]陈建宏,覃曹原,邓东升.基于AHP和物元TOPSIS法的层状岩体巷道冒顶风险评价[J].黄金科学技术,2017,25(1):55-60. CHEN Jianhong,TAN Caoyuan,DENG Dongsheng.Risk assessment of bedded rock roadway roof fall based on AHP andmatter-element TOPSIS method[J].Gold Science and Technology,2017,25(1):55-60.
[13]LIU R,YE Y C,HU N Y,et al.Classified prediction model of rockburst using rough sets-normal cloud[J]. Neural Computing and Applications,2019,31(12):8185-8193.
[14]雷勋平,邱广华.基于熵权TOPSIS模型的区域资源环境承载力评价实证研究[J].环境科学学报,2016,36(1):314-323. LEI Xunping,QIU Guanghua.Empirical study about the carrying capacity evaluation of regional resources and environment based on entropy-weight TOPSIS model[J].Acta Scientiae Circumstantiae,2016,36(1):314-323.
[15]李彤,李武选,陈竹茹.基于熵权—TOPSIS法的沿海港口城市物流竞争力评价研究[J].资源开发与市场,2019,35(8):1031-1036. LI Tong,LI Wuxuan,CHEN Zhuru.Evaluation research on logistics competitiveness of coastal portcities based on entropy weight-TOPSIS method[J].Resource Development & Market,2019,35(8):1031-1036.
[16]张晓燕.基于模糊综合评价的岩爆危险性预测[D].邯郸:河北工程大学,2017.
[17]王旷,李夕兵,马春德,等.基于改进的RS-TOPSIS模型的岩爆倾向性预测[J].黄金科学技术,2019,27(1):80-88. WANG Kuang,LI Xibing,MA Chunde,et al.Rock-burst proneness prediction based on improved RS-TOPSIS model[J].Gold Science and Technology,2019,27(1):80-88.
[18]于群.深埋隧洞岩爆孕育过程及预警方法研究[D].大连:大连理工大学,2016.
[19]梁志勇.锦屏二级水电站引水隧洞岩爆预测及防治对策研究[D].成都:成都理工大学,2004.
[20]江权,冯夏庭,苏国韶,等.高地应力下拉西瓦水电站地下洞室群稳定性分析[J].水力发电学报,2010,29(5):132-140. JIANG Quan,FENG Xiating,SU Guoshao,et al.Stability analysis of large underground caverns in Laxiwa hydropower plant under high crustal stress[J].Journal of Hydroelectric Engineering,2010,29(5):132-140.
[21]董源,张引,习朝辉.基于组合赋权-TOPSIS理论的岩爆预测研究[J].人民珠江,2018,39(9):87-91. DONG Yuan,ZHANG Yin,XI Chaohui.Research on rockburst forecasting based on combination weighting-TOPSIS theory[J].People’s Pearl River,2018,39(9):87-91.

相似文献/References:

[1]鲜涛,姚安林,李熠辰,等.基于属性识别理论的油气管道施工质量风险评价[J].中国安全生产科学技术,2015,11(4):95.[doi:10.11731/j.issn.1673-193X.2015.04.015]
 XIAN Tao,YAO An-lin,LI Yi-chen,et al.Risk assessment on constructing quality of oil & gas pipeline based on attribute recognition theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(3):95.[doi:10.11731/j.issn.1673-193X.2015.04.015]
[2]何亚伯,秦伟,汪洋.基于组合赋权和灰色Euclid理论的深基坑支护方案优选[J].中国安全生产科学技术,2016,12(3):94.[doi:10.11731/j.issn.1673-193x.2016.03.017]
 HE Yabo,QIN Wei,WANG Yang.Optimization of supporting schemes for deep foundation pit based on combined weight and grey Euclid theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):94.[doi:10.11731/j.issn.1673-193x.2016.03.017]
[3]吴波,路明,雷领,等.基于正交试验、组合赋权-灰色关联度法研究隧道施工最优方案[J].中国安全生产科学技术,2019,15(8):124.[doi:10.11731/j.issn.1673-193x.2019.08.020]
 WU Bo,LU Ming,LEI ling,et al.Research on optimal scheme of tunnel construction based on orthogonal test and combined weightinggrey correlation method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):124.[doi:10.11731/j.issn.1673-193x.2019.08.020]
[4]常嘉慧,郝伟.高海拔地区在役混凝土桥梁安全预警研究*[J].中国安全生产科学技术,2020,16(3):111.[doi:10.11731/j.issn.1673-193x.2020.03.018]
 CHANG Jiahui,HAO Wei.Study on safety earlywarning of inservice concrete bridges in highaltitude areas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):111.[doi:10.11731/j.issn.1673-193x.2020.03.018]
[5]魏雪萍,郝伟,王炜,等.节段预制悬臂拼装梁施工安全风险评价[J].中国安全生产科学技术,2020,16(7):131.[doi:10.11731/j.issn.1673-193x.2020.07.021]
 WEI Xueping,HAO Wei,WANG Wei,et al.Safety risk assessment on construction of segmental prefabricating cantilever assembling beams[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):131.[doi:10.11731/j.issn.1673-193x.2020.07.021]
[6]王灵智,闫林君.基于组合赋权-可变模糊集的装配式建筑施工安全评价*[J].中国安全生产科学技术,2020,16(11):103.[doi:10.11731/j.issn.1673-193x.2020.11.016]
 WANG Lingzhi,YAN Linjun.Safety evaluation of prefabricated building construction based on combination weighting and variable fuzzy sets[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(3):103.[doi:10.11731/j.issn.1673-193x.2020.11.016]
[7]郝伟,张然,王德凯,等.基于Vague集-可拓模型的断层富水区桥梁运营安全评估[J].中国安全生产科学技术,2023,19(10):115.[doi:10.11731/j.issn.1673-193x.2023.10.016]
 HAO Wei,ZHANG Ran,WANG Dekai,et al.Evaluation on operational safety of bridge in fault water-rich area based on Vague set and extension model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(3):115.[doi:10.11731/j.issn.1673-193x.2023.10.016]
[8]蔺瑜,谢贤平,刘杰.矿山安全避险“六大系统”能力成熟度分析*[J].中国安全生产科学技术,2023,19(12):59.[doi:10.11731/j.issn.1673-193x.2023.12.008]
 LIN Yu,XIE Xianping,LIU Jie.Analysis on capability maturity of safety hedging “six systems” in mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(3):59.[doi:10.11731/j.issn.1673-193x.2023.12.008]

备注/Memo

备注/Memo:
收稿日期: 2019-09-09
* 基金项目: 国家自然科学基金项目(41672303)
作者简介: 李明亮,硕士研究生,主要研究方向为岩石力学及工程。
通信作者: 李克钢,博士,教授,主要研究方向为岩石力学、工程岩体稳定性等。
更新日期/Last Update: 2020-04-01