|本期目录/Table of Contents|

[1]杨前意,石必明,张雷林,等.不同含水率煤尘在瓦斯爆炸诱导下爆炸传播规律研究[J].中国安全生产科学技术,2019,15(3):25-29.[doi:10.11731/j.issn.1673-193x.2019.03.004]
 YANG Qianyi,SHI Biming,ZHANG Leilin,et al.Study on laws of explosion propagation for coal dust with different moisture contents induced by gas explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):25-29.[doi:10.11731/j.issn.1673-193x.2019.03.004]
点击复制

不同含水率煤尘在瓦斯爆炸诱导下爆炸传播规律研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年3期
页码:
25-29
栏目:
学术论著
出版日期:
2019-03-31

文章信息/Info

Title:
Study on laws of explosion propagation for coal dust with different moisture contents induced by gas explosion
文章编号:
1673-193X(2019)-03-0025-05
作者:
杨前意石必明张雷林张鸿智王超
(安徽理工大学 能源与安全学院,安徽 淮南 232001)
Author(s):
YANG QianyiSHI BimingZHANG LeilinZAHNG HongzhiWANG Chao
(School of Energy and Safety, Anhui University of Science and Technology, Huainan Anhui 232001, China)
关键词:
含水率沉积煤尘传播规律防爆
Keywords:
moisture content deposited coal dust propagation law explosionproof
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2019.03.004
文献标志码:
A
摘要:
为了探究不同含水率煤尘在瓦斯爆炸诱导下的爆炸传播规律,利用自行搭建的直管瓦斯爆炸诱导煤尘二次爆炸实验系统,从冲击波压力和火焰传播速度2个方面,研究了不同含水率沉积煤尘在瓦斯爆炸诱导下的爆炸传播规律和原因。研究结果表明:当煤尘含水率小于40%时,管道内沉积煤尘会在瓦斯爆炸诱导下产生二次爆炸,同时沉积煤尘总量一定时,沉积煤尘二次爆炸产生的冲击波超压峰值和火焰传播速度随着煤尘含水率的增加先增大后减小;当沉积煤尘含水率为20% 时,煤尘二次爆炸产生的冲击波超压峰值、火焰传播速度峰值达到最大值,分别为1.657 MPa和468.060 m/s;当沉积煤尘含水率大于40%时,沉积煤尘无法产生二次爆炸,此时爆炸产生的威力小于单一瓦斯爆炸,火焰传播速度衰减较无煤尘的瓦斯爆炸更快,沉积煤尘起到抑制瓦斯爆炸传播的作用。研究结果可以为防治煤尘二次爆炸提供理论依据。
Abstract:
In order to explore the explosion propagation laws of coal dust with different moisture contents induced by gas explosion, the laws and reasons of explosion propagation for the deposited coal dust with different moisture contents induced by gas explosion were studied from two aspects of shock wave pressure and flame propagation velocity by using the selfbuilt experimental system on secondary explosion of coal dust induced by straight pipe gas explosion. The results showed that when the water content of coal dust was less than 40%, the coal dust deposited in the pipe would produce a secondary explosion induced by the gas explosion, and when the total amount of deposited coal dust was fixed, the peak shock wave overpressure and the flame propagation velocity caused by the secondary explosion of coal dust increased first and then decreased with the increase of moisture content of coal dust. When the moisture content of deposited coal dust was 20%, the peak shock wave overpressure and the peak flame propagation velocity caused by the secondary explosion of coal dust reached the maximum values, which was 1.657 MPa and 468.060 m/s respectively. When the water content of deposited coal dust was greater than 40%, the deposited coal dust would not generate the secondary explosion, at this time, the power generated by the explosion was less than that of single gas explosion, and the attenuation of flame propagation velocity was faster than that of gas explosion without the coal dust, so the deposited coal dust played a role of inhibiting the propagation of gas explosion. The results can provide theoretical basis for the prevention and control of secondary explosion of coal dust.

参考文献/References:

[1]TORRENT J G, FUCHS J C. Flammability an explosion propagation of methane-Coal dust hybrid mixtures [C]//Proceedlings of the International Conference of Safety in Mining Research Institute. Pretoria, South Africa, 1989, 23: 11-15.
[2]AMYOTTE P R,MINTZ K J,PEGG M J,et al. Laboratory investigation of the dust explosibility characteristics of three Nova Scotia coals[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(2): 102-109.
[3]AMYOTTE P R,MINTZ K J,PEGG M J,et al. The ignitability of coal dust-air and methane- coal dust-air mixtures [J]. Fuel, 1993, 72 (5): 671-679.
[4]候万兵.煤尘-瓦斯混合物爆炸压力研究[D].太原:中北大学,2010.
[5]李润之. 瓦斯爆炸诱导沉积煤尘爆炸的研究[D]. 北京:煤炭科学研究总院, 2007.
[6]李润之. 瓦斯爆炸诱导沉积煤尘爆炸的数值模拟[J]. 爆炸与冲击, 2010, 30(5):529-534. LI Runzhi. Numerical simulation of gas explosion induced by gas explosion[J]. Explosion and Shock Wave, 2010, 30(5): 529-534.
[7]李润之, 蔡周全, 薛少谦. 瓦斯爆炸引起沉积煤尘卷扬爆炸的机理研究[J]. 矿业安全与环保, 2007, 34(6):21-23. LI Runzhi, CAI Zhouquan, XUE Shaoqian. Study on mechanism of detonation and explosion of sedimentary coal dust caused by gas explosion[J]. Mining Safety and Environmental Protection, 2007, 34(6): 21-23.
[8]景国勋,杨书召.煤尘爆炸传播特性的实验研究[J]. 煤炭学报, 2010, 35(4):605-608. JING Guoxun,YANG Shuzhao. Experimental study on propagation characteristics of coal dust explosion[J]. Journal of China Coal Society, 2010, 35(4): 605-608.
[9]王成,回岩,胡斌斌,等.障碍物形状对瓦斯爆炸火焰传播过程的影响[J].北京理工大学学报,2015,35(7):661-665,676. WANG Cheng, HUI Yan, HU Binbin,et al. The influence of obstacle shape on the propagation process of gas explosion flame[J]. Journal of Beijing Institute of Technology, 2015, 35(7): 661-665,676.
[10]周西华,王原,李昂,等.隔爆水幕对瓦斯爆炸传播规律影响的试验研究[J].中国安全生产科学技术,2017,13(11):123-128. ZHOU Xihua,WANG Yuan,LI Ang,et al.Experimental study on the effect of flameproof water curtain on gas explosion propagation law[J].Journal of Safety Science and Technology,2017,13(11): 123-128.
[11]刘天奇,郑秋雨,苏长青.水平管内不同煤质煤尘爆炸火焰传播特性实验研究[J].中国安全生产科学技术,2018,14(10):127-132. LIU Tianqi,ZHENG Qiuyu,SU Changqing. Experimental study on flame propagation characteristics of different coal-mass coal dust explosions in horizontal pipes[J]. Journal of Safety Science and Technology,2018,14(10):127-132.
[12]裴蓓,李杰,余明高,等.CO2超细水雾对瓦斯/煤尘爆炸抑制特性研究[J].中国安全生产科学技术,2018,14(8): 54-60. PEI Bei,LI Jie,YU Minggao,et al. Study on the inhibition characteristics of gas/coal dust explosion by CO2 superfine water mist[J]. Journal of Safety Science and Technology,2018,14(8):54-60.
[13]林柏泉,洪溢都,朱传杰,等.瓦斯爆炸压力与波前瞬态流速演化特征及其定量关系[J].爆炸与冲击,2015,35(1):108-115. LIN Boquan,HONG Yidu,ZHU Chuanjie,et al. The evolution characteristics of gas explosion pressure and wavefront transient velocity and its quantitative relationship[J].Explosion and Shock Wave,2015,35(1):108-115.
[14]张迎新,吴强,刘传海,等.惰性气体N2/CO2抑制瓦斯爆炸实验研究[J].爆炸与冲击,2017,37(5):906-912. ZHANG Yingxin, WU Qiang, LIU Chuanhai,et al. Experimental study on inhibition of gas explosion by inert gas N2/CO2 [J]. Explosion and Shock Wave,2017,37(5): 906-912.
[15]王冬雪,刘剑,高科,等.煤尘挥发分及粒径对爆炸火焰长度的影响研究[J].中国安全生产科学技术,2016,12(5):43-47. WANG Dongxue,LIU Jian,GAO Ke,et al. Study on the influence of volatile matter and particle size of coal dust on explosion flame length[J]. Journal of Safety Science and Technology,2016,12(5):43-47.
[16]陈东梁, 孙金华, 刘义. 甲烷-煤尘复合火焰的传播与温度特征[J]. 安全与环境学报,2008,8(1):123-126. CHEN Dongliang,SUN Jinhua,LIU Yi. The propagation and temperature characteristics of methane-coal composite flame[J].Journal of Safety and Environment,2008,8(1):123-126.
[17]冯永安,胡双启,胡立双,等.基于20 L球形爆炸装置的甲烷煤尘混合爆炸实验[J].中国安全生产科学技术,2012,8(7):16-19. FENG Yongan,HU Shuangqi,HU Lishuang,et al. Experimental study on methane and coal dust mixed explosion based on 20 L spherical explosive device[J]. Journal of Safety Science and Technology,2012,8(7):16-19.
[18]高科,贾进章,刘永红.爆炸冲击波及高温耦合引起瓦斯二次爆炸特性研究[J].中国安全生产科学技术,2016,12(4):35-38. GAO Ke,JIA Jinzhang,LIU Yonghong. Study on the characteristics of gas explosion caused by explosion shock wave and high temperature coupling[J]. Journal of Safety Science and Technology,2016,12 (4):35-38.

相似文献/References:

[1]唐绍猛,刘德俊,王光辉.油水两相流弯管处安全分析[J].中国安全生产科学技术,2016,12(10):96.[doi:10.11731/j.issn.1673-193x.2016.10.016]
 TANG Shaomeng,LIU Dejun,WANG Guanghui.Safety analysis on oil-water two-phase flow in curved pipe[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):96.[doi:10.11731/j.issn.1673-193x.2016.10.016]
[2]张民波,朱红青,吝曼卿,等.加卸载下含水率对含瓦斯煤岩损伤变形的影响分析[J].中国安全生产科学技术,2017,13(5):90.[doi:10.11731/j.issn.1673-193x.2017.05.015]
 ZHANG Minbo,ZHU Hongqing,LIN Manqing,et al.Effect of moisture content on damage deformation of coal containing gas under loading and unloading conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(3):90.[doi:10.11731/j.issn.1673-193x.2017.05.015]
[3]张庆浩,贾天让,李松林,等.含水率对构造煤煤粒瓦斯扩散的影响研究[J].中国安全生产科学技术,2018,14(8):117.[doi:10.11731/j.issn.1673-193x.2018.08.019]
 ZHANG Qinghao,JIA Tianrang,LI Songlin,et al.Study on influence of water content on gas diffusion of tectonic coal particles[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(3):117.[doi:10.11731/j.issn.1673-193x.2018.08.019]
[4]刘永,潘宇翔,张志军,等.含水率和干密度对某铀尾砂基质吸力的影响研究[J].中国安全生产科学技术,2018,14(11):45.[doi:10.11731/j.issn.1673-193x.2018.11.007]
 LIU Yong,PAN Yuxiang,ZHANG Zhijun,et al.Research on influence of water content and dry density on matric suction of uranium tailings[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(3):45.[doi:10.11731/j.issn.1673-193x.2018.11.007]
[5]林雪松,王永吉,王东,等.细尾矿砂非饱和渗流稳态含水率二维解析解[J].中国安全生产科学技术,2019,15(5):111.[doi:10.11731/j.issn.1673-193x.2019.05.018]
 LIN Xuesong,WANG Yongji,WANG Dong,et al.Twodimensional analytical solution of steady water content for fine tailing sand with unsaturated seepage[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):111.[doi:10.11731/j.issn.1673-193x.2019.05.018]
[6]皮子坤,董子文,李锐.水化煤饱和-风干过程的自燃特性实验研究[J].中国安全生产科学技术,2019,15(9):94.[doi:10.11731/j.issn.1673-193x.2019.09.015]
 PI Zikun,DONG Ziwen,LI Rui.Experimental study on spontaneous combustion characteristics of hydrated coal during saturationair drying process[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(3):94.[doi:10.11731/j.issn.1673-193x.2019.09.015]
[7]高始军.高速铁路地基膨胀泥岩变形试验及计算研究*[J].中国安全生产科学技术,2021,17(5):33.[doi:10.11731/j.issn.1673-193x.2021.05.005]
 GAO Shijun.Test and calculation study on deformation of foundation expansive mudstone in high-speed railway[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(3):33.[doi:10.11731/j.issn.1673-193x.2021.05.005]
[8]史文豹,许庆钊,常聚才,等.不同含水率细砂岩软化效应及裂纹演化规律*[J].中国安全生产科学技术,2024,20(3):118.[doi:10.11731/j.issn.1673-193x.2024.03.017]
 SHI Wenbao,XU Qingzhao,CHANG Jucai,et al.Softening effect and crack evolution law of fine sandstone with different water contents[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(3):118.[doi:10.11731/j.issn.1673-193x.2024.03.017]

备注/Memo

备注/Memo:

收稿日期: 2019-01-15;数字出版日期:2019-03-22
基金项目: 国家自然科学基金项目(51874008);国家重点研发计划项目(2018YFC0808101);安徽省自然科学基金项目(1608085QE114)
作者简介: 杨前意,硕士研究生,主要研究方向为煤与瓦斯灾害防治。
更新日期/Last Update: 2019-04-15