|本期目录/Table of Contents|

[1]田水承,张成镇.聚集用火下热探测器响应温度的研究[J].中国安全生产科学技术,2018,14(2):52-57.[doi:10.11731/j.issn.1673-193x.2018.02.008]
 TIAN Shuicheng,ZHANG Chengzhen.Research for response temperature of thermal detector in clustered using fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(2):52-57.[doi:10.11731/j.issn.1673-193x.2018.02.008]
点击复制

聚集用火下热探测器响应温度的研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年2期
页码:
52-57
栏目:
学术论著
出版日期:
2018-02-28

文章信息/Info

Title:
Research for response temperature of thermal detector in clustered using fire
文章编号:
1673-193X(2018)-02-0052-06
作者:
田水承12张成镇12
(1. 西安科技大学 安全科学与工程学院安全管理研究所,陕西 西安 710054; 2. 西安科技大学 教育部西部矿山开采及灾害治理重点实验室,陕西 西安 710054)
Author(s):
TIAN Shuicheng12 ZHANG Chengzhen12
(1. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China; 2. Key Laboratory of Western Mines and Hazard Prevention of Ministry of Education, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China)
关键词:
计算公式聚集用火热探测器响应温度PyroSim数值模拟
Keywords:
calculation formula clustered using fire thermal detector’s response temperature PyroSim numerical simulation
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2018.02.008
文献标志码:
A
摘要:
为得出聚集用火下建筑物天花板平面热探测器响应温度的计算公式,采用PyroSim 2015软件进行建模,在模型天花板平面内设置一系列的热电偶代替热探测器监测温度变化,在热释放速率(HRR)分别为1,5,10,20,30 kW和天花板高度分别为3,5,7 m的条件下进行15次数值模拟,对模拟结果数据分析、处理及拟合。研究表明:羽流中心线处温度远高于其他位置;羽流中心线处响应温度随着天花板高度的升高而降低,且与HRR存在显著的二次函数关系;其他位置处响应温度随着天花板高度的升高而降低,随着到羽流中心线距离的增大而降低,且与HRR和到羽流中心线的距离存在显著的二次函数关系。结合室内全年最高温度及补偿温度,建立出聚集用火下热探测器响应温度的计算公式。
Abstract:
To obtain the calculation formula for the response temperature of thermal detector on the ceiling plane of the buildings with the clustered using fire, the modeling was carried out by using PyroSim 2015 software. A series of thermocouples were set on the ceiling plane of the model instead of the thermal detectors to monitor the temperature change, and 15 numerical simulation were conducted when the heat release rate (HRR) was 1, 5, 10, 20, 30 kW respectively and the ceiling height was 3, 5, 7 m respectively, then the data of simulation results were analyzed, processed and fitted. The results showed that the temperature at the center line of the plume was much higher than those at the other locations. The response temperature at the center line of the plume decreased with the increase of ceiling height, and it had a significant quadratic function relationship with the HRR. The response temperature at the other locations decreased with the increase of ceiling height and decreased with the increasing distance to the center line of the plume, and it had a significant quadratic function relationship with the HRR and the distance to the center line of the plume. A calculation formula for the response temperature of thermal detector in clustered using fire was established by combining with the indoor annual maximum temperature and compensation temperature.

参考文献/References:

[1]中华人民共和国住房和城乡建设部. 火灾自动报警系统设计规范:GB 50116-2013[S].北京:中国计划出版社,2014.
[2]NAKANISHI S,NOMURA J,KURIO T,et al. Intelligent Fire Warning System Using Fuzzy Technology[J]. Journal of Japan Society for Fuzzy Theory and Systems,1993,5(1): 95-107.
[3]ISHII H,YAMAUCHI T O,OHTANI S. An algorithm for improving the reliability of detection with processing of multiple sensors signal[J]. Fire Safety Journal,1991,17(6): 469-484.
[4]KANWAL K,LIAQUAT A,MUGHAL M,et al. Towards development of a low cost early fire detection system using wireless sensor network and machine vision[J]. Wireless Pers Commun,2017(95):475-489.
[5]BEEVER P F. Estimating the response of thermal detectors[J]. Journal of Fire Protection Engineering,1990,2(1):11-24.
[6]EVANS D D,STROUP D W. Methods to calculate the response time of heat and smoke detectors installed below large unobstructed ceilings[J]. Fire Technology,1985,22(1):54-65.
[7]MILKE J,ZEVOTEK R. Analysis of the response of smoke detectors to smoldering fires and nuisance sources[J]. Fire Technology,2016(52): 1235-1253.
[8]HURLEY M J,MUNGUIA A. Analysis of prediction capability of FDS for response of thermal detectors[J]. Journal of Fire Protection Engineering,2010,20(5):77-99.
[9]GEIMAN J A,GOTTUK D T and MILKE J A. Evaluation of smoke detector response estimation methods: Optical density,temperature rise,and velocity at alarm[J]. Journal of Fire Protection Engineering,2006(16):251-268.
[10]田水承,张成镇. 古建筑用火源感温探测器响应温度研究[J]. 消防科学与技术,2017,36(11):1554-1557. TIAN Shuicheng,ZHANG Chengzhen. Study on response temperature of temperature detectors in ancient buildings with incense[J]. Fire Science and Technology,2017,36(11):1554-1557.
[11]NIST. PyroSim User Manual[M]. Manhattan,2010.
[12]MCGRATTAN K. Fire dynamics simulator (version 5) technical reference guide[M]. NIST Special Publication,2001.
[13]王远. 大型建筑火灾蔓延模拟研究[D]. 北京: 北京建筑工程学院,2012.

相似文献/References:

[1]李军正,郑金达,魏雪,等.通信铁塔影响建筑物防雷安全计算公式之合理性探讨[J].中国安全生产科学技术,2013,9(11):162.[doi:10.11731/j.issn.1673-193x.2013.11.028]
 LI Jun zheng,ZHENG Jin da,WEI Xue,et al.Exploration to the rationality of computational formulae for impacting of communication towers on building lightningprotection safety[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(2):162.[doi:10.11731/j.issn.1673-193x.2013.11.028]
[2]卜康正,郑先昌,沈翔,等.基坑放坡开挖对下方既有地铁隧道影响计算及风险预测[J].中国安全生产科学技术,2019,15(7):5.[doi:10.11731/j.issn.1673-193x.2019.07.001]
 BU Kangzheng,ZHENG Xianchang,SHEN Xiang,et al.Calculation for effect of foundation pit sloping excavation on underlying metro tunnels and risk prediction[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(2):5.[doi:10.11731/j.issn.1673-193x.2019.07.001]

备注/Memo

备注/Memo:
国家科学自然基金项目(71273208,71271169);陕西省教育厅哲学社会科学重点研究基地项目(14JZ026);工效学-津发优秀青年学者联合研究基金项目(CES-KF-2017-05)
更新日期/Last Update: 2018-03-19