|本期目录/Table of Contents|

[1]刘朝峰,兰玥,张晓博,等.供水管网震后流量监测点的动态分级优化布局研究[J].中国安全生产科学技术,2018,14(1):12-17.[doi:10.11731/j.issn.1673-193x.2018.01.002]
 LIU Chaofeng,LAN Yue,ZHANG Xiaobo,et al.Study on dynamic classification for layout optimization of post-earthquake flow monitoring points in water supply network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(1):12-17.[doi:10.11731/j.issn.1673-193x.2018.01.002]
点击复制

供水管网震后流量监测点的动态分级优化布局研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
14
期数:
2018年1期
页码:
12-17
栏目:
学术论著
出版日期:
2018-01-31

文章信息/Info

Title:
Study on dynamic classification for layout optimization of post-earthquake flow monitoring points in water supply network
文章编号:
1673-193X(2018)-01-0012-06
作者:
刘朝峰1兰玥1张晓博1王威2
(1.河北工业大学 土木与交通学院,天津 300401;2.北京工业大学 抗震减灾研究所,北京 100124)
Author(s):
LIU Chaofeng1 LAN Yue1 ZHANG Xiaobo1 WANG Wei2
(1. College of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China; 2. Institute of Earthquake Resistances and Disaster Reduction, Beijing University of Technology, Beijing 100124, China)
关键词:
供水管网地震监测点动态分级方法水力分析影响系数聚类分析
Keywords:
water supply network (WSN) seismic monitoring point dynamic classification method hydraulic analysis influence coefficient cluster analysis
分类号:
X913.4;TU991
DOI:
10.11731/j.issn.1673-193x.2018.01.002
文献标志码:
A
摘要:
为了提高管网地震监测点布局的准确性和合理性,基于管网微观水力计算模型和动态分级法,提出供水管网震后流量监测点的动态分级优化布局模型。首先,利用管网微观水力计算模型计算管段流量的影响系数,构建管段的影响系数矩阵,并利用信息熵确定管段权重;其次,标准化处理影响系数矩阵,通过聚类迭代提出供水管网地震流量监测点优化布局的动态分级方法,对供水管网震后流量监测点进行优化布置分级评定;最后,根据工程实例进行方法实践,结果表明:供水管网中的管线分类较为科学合理,地震监测点在供水管网上分布也比较均匀,而且该模型在一定程度上消除了人为因素的影响,保障了震时管网的监控效果和日常建设的合理性。
Abstract:
In order to improve the accuracy and rationality of the layout of seismic monitoring points in the water supply network (WSN), a model on the dynamic classification for layout optimization of the post-earthquake flow monitoring points in the WSN was proposed based on the microcosmic hydraulic calculation model of pipe network and the dynamic classification method. Firstly, the influence coefficients of pipe section flow were calculated by using the microcosmic hydraulic calculation model of pipe network, and an influence coefficient matrix of pipe sections was established, then the weights of pipe sections were determined by using the information entropy. Secondly, the standardized processing was conducted on the influence coefficient matrix, and a dynamic classification method for layout optimization of seismic flow monitoring points in the WSN was put forward through the clustering iteration, and the layout optimization and classification evaluation of the post-earthquake flow monitoring points in the WSN were carried out. Finally, this method was applied in the practice according to the engineering case. The results showed that the classification of pipes in the WSN was relatively reasonable and scientific, and the distribution of seismic monitoring points in the WSN was relatively uniform. This model eliminated the influence of human factors to a certain extent, and guaranteed the seismic monitoring effect and the rationality of daily construction of the pipe network.

参考文献/References:

[1]LIU Wei, XU Liang, LI Jie. Algorithms for seismic topology optimization of water distribution network[J]. Science China Technological Sciences, 2012, 55(11): 3047-3056.
[2]刘遂庆, 郑小明, 王永. “512”特大地震中供水管网损坏调查分析[C]// 2010中日给水技术国际交流会. 2010.
[3]SHINOZUKA E B M. The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Lifelines[R]. MCEER Technical Reports (public) ,1995.
[4]曹欣欣,郄志红,王伟哲,等.供水管网故障诊断的流量监测点遗传优化布置[J].中国农村水利水电,2013(1):79-83. CAO Xinxin, QIE Zhihong, WANG Weizhe, et al. Genetic optimization arrangement of the flow monitoring points in water-supply network fault diagnosis[J]. China Water & Wastewater, 2013, (1): 79-83.
[5]刘书明, 王欢欢, 徐鹏,等. 多目标大规模供水管网监测点的优化选址[J]. 清华大学学报(自然科学版), 2013,53(1):78-83. LIU Shuming, WANG Huanhuan, XU Peng, et al. Multiobjective genetic algorithms for optimal monitoring station placement in large water distribution systems[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(1): 78-83.
[6]PIEKUTOWSKI M, LITWINOWICZ T, FROWD R J. Optimal short-term scheduling for a large-scale cascaded hydro system[J]. IEEE Transactions on Power Systems, 1994, 9(2):805-811.
[7]周书葵,许仕荣.城市供水管网水压监测点优化布置的研究[J].南华大学学报(自然科学版),2005,19(1):59-63. ZHOU Shukui, XU Shirong. Studying optimal locationg of pressure monitoring station in urban water distribution system[J]. Journal of Nahua University(Science and Technology), 2005, 19(1): 59-63.
[8]王伟哲,郄志红,刘美侠,等.基于改进遗传算法的供水管网故障监测点布置优化[J].水力发电学报,2012,31(1):15-19, 37. WANG Weizhe, QIE Zhihong, LIU Meixia, et al. Optimized arrangement of fault-monitor sensors of water supply network by improved genetic algorithm[J]. Journal of Hydroelectric Engineering, 2012, 31(1): 15-19,37.
[9]黄廷林,丛海兵.给水管网测压点优化布置的模糊聚类法[J].中国给水排水,2001,17(11):50-52. HUANG Tinglin, CONG Haibin.The fuzzy clustering on the optimization arrangement for pressure monitoring points of water supply network[J]. China Water & Waste water, 2001, 17(11): 50-52.
[10]王绍伟,李树平,刘先品,等.FCM聚类算法在给水管网流量监测点优化布置中的应用[J].给水排水,2009,35(z1):441-444. WANG Shaowei, LI Shuping, LIU Xianpin, et al. Application of FCM clustering algorithm in optimized layout of flow monitoring points in the water-supply network[J]. Water Supply and Drainage, 2009, 35(z1):441-444.
[11]梁建文. 供水管网健康监测的压力监测点优化布置[A].全国第二届防灾减灾工程学术会议论文集[C].2013:7.
[12]柳春光,何双华.城市供水管网地震时的水力分析研究[J].世界地震工程,2010,26(2):25-29. LIU Chunguang, HE Shuanghua. Hydraulic analysis of urban water supply network after strong earthquakes[J]. World Earthquake Engineering, 2010, 26(2): 25-29.
[13]PATHIRANA A. EPANET2 Desktop Application for Pressure Driven Demand Modeling[C]// Water Distribution Systems Analysis 2010. ASCE, 2011.
[14]梁建文. 城市供水管网健康监测与诊断(Ⅱ)——既有局部漏损识别方法[J]. 地震工程与工程振动, 2010, 30(5):100-105. LIANG Jianwen. Health monitoring and diagnosis of a water distribution system:Ⅱ. Identification of an existent local loss[J]. Earthquake Engineering and Engineering Vibration, 2010, 30(5):100-105.
[15]胥旋, 钟茂华, 史聪灵,等. 基于动态分级法的地铁设备设施风险评价研究[J]. 中国安全科学学报, 2013, 23(7):61-66. XU Xuan, ZHONG Maohua, SHI Congling, et al. Risk assessment of equipment and facilities in metro based on dynamic classicication method[J]. China Safety Science Journal, 2013, 23(7):61-66.
[16]王思华, 杨桐, 段启凡,等. 基于DT法和粗糙集理论的接地网安全性状态评定[J]. 电力系统保护与控制, 2017, 45(2):48-54. WANG Sihua, YANG Tong, DUAN Qifan, et al. Evaluation of security state in grounding grid based on DT method and rough set[J]. Power System Protection and Control, 2017, 45(2): 48-54.
[17]王志涛,郭小东.城市抗震防灾应急供水保障对策研究[J].工业建筑,2016,46(6):8-11, 20. WANG Zhitao, GUO Xiaodong. Research on emergency water supply countermeasures for urban earth-quake disaster prevention[J]. Industrial Construction, 2016, 46(6): 8-11,20.

相似文献/References:

[1]王威,丛旭,武佳佳,等.城市供水管网漏损动态预测的Bootstrap-Lee-Carter模型*[J].中国安全生产科学技术,2021,17(6):30.[doi:10.11731/j.issn.1673-193x.2021.06.005]
 WANG Wei,CONG Xu,WU Jiajia,et al.Bootstrap-Lee-Carter model for dynamic prediction of leakage in urban water supply pipeline network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(1):30.[doi:10.11731/j.issn.1673-193x.2021.06.005]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-02-12