|本期目录/Table of Contents|

[1]梁跃强,林辰,宫伟东,等.投影寻踪聚类方法在煤与瓦斯突出危险性预测中的应用[J].中国安全生产科学技术,2017,13(1):46-50.[doi:10.11731/j.issn.1673-193x.2017.01.008]
 LIANG Yueqiang,LIN Chen,GONG Weidong,et al.Application of projection pursuit cluster method in risk prediction of coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(1):46-50.[doi:10.11731/j.issn.1673-193x.2017.01.008]
点击复制

投影寻踪聚类方法在煤与瓦斯突出危险性预测中的应用
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年1期
页码:
46-50
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-01-31

文章信息/Info

Title:
Application of projection pursuit cluster method in risk prediction of coal and gas outburst
文章编号:
1673-193X(2017)-01-0046-05
作者:
梁跃强林辰宫伟东郭晓洁张毅鹏
中国矿业大学北京 资源与安全工程学院,北京 100083
Author(s):
LIANG Yueqiang LIN Chen GONG Weidong GUO Xiaojie ZHANG Yipeng
School of Resources and Safety Engineering, China University of Mining and TechnologyBeijing, Beijing 100083, China
关键词:
投影寻踪煤与瓦斯突出突出预测瓦斯地质聚类方法
Keywords:
coal and gas outburst outburst prediction gas geology projection pursuit cluster method
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2017.01.008
文献标志码:
A
摘要:
为了提高煤与瓦斯突出预测的准确率,在研究矿井瓦斯地质特征基础上,建立煤与瓦斯突出预测指标体系,应用投影寻踪方法和聚类方法构建了煤与瓦斯突出危险性预测的投影寻踪聚类模型。该模型通过计算反映煤与瓦斯突出危险程度的一维投影特征值,并对其进行聚类分析,得出煤与瓦斯突出危险性等级。将模型应用于平煤八矿戊9,10-21030工作面回风巷,预测等级与实际煤与瓦斯突出情况吻合度较高。结果表明,应用投影寻踪聚类方法对平煤八矿进行煤与瓦斯突出危险性预测是可行的。
Abstract:
In order to improve the accuracy of prediction on coal and gas outburst, an index system on prediction of coal and gas outburst was established based on the research of gas geology characteristics, and a projection pursuit cluster model on risk prediction of coal and gas outburst was constructed by using the projection pursuit method and cluster method. In this model, the risk grade of coal and gas outburst can be obtained by calculating the one-dimensional projection characteristic values, which can reflect the risk degree of coal and gas outburst, and the cluster analysis on the results. The model was applied in the working face of Wu9,10-21030 airway in No.8 coal mine of Pingdingshan Mine, and the prediction grade was consistent with the practical situation of coal and gas outburst. The results showed that the projection pursue cluster method is available for risk prediction of coal and gas outburst in No.8 coal mine of Pingdingshan Mine.

参考文献/References:

[1]于不凡.煤矿瓦斯灾害防治及利用手册[M].修订版.北京:煤炭工业出版社,2005. [2]彭立世,袁崇孚.瓦斯地质与瓦斯突出预测[M].北京:中国科学技术出版社,2009. [3]中华人民共和国国家安全生产监督管理总局.防治煤与瓦斯突出规定[M]. 北京:煤炭工业出版社,2009. [4]郭德勇,李念友,裴大文,等.煤与瓦斯突出预测灰色理论-神经网络方法[J].北京科技大学学报,2007,29(4):354-357. GUO Deyong, LI Nianyou, PEI Dawen, et al. Prediction method of coal and gas outburst using the grey theory and neural network[J]. Journal of University of Science and Technology Beijing, 2007, 29(4):354-357. [5]伍爱友,肖红飞,王从陆,等.煤与瓦斯突出控制因素加权灰色关联模型的建立与应用[J].煤炭学报,2005,30(1):58-62. WU Aiyou, XIAO Hongfei, WANG Conglu, et al. Establishment and application of weights and gray association model based on coal and gas outburst controlled factors assessment[J]. Journal of China Coal Society, 2005, 30(1): 58-62. [6]郭德勇,范金志,马世志,等.煤与瓦斯突出预测层次分析-模糊综合评判方法[J].北京科技大学学报,2007,29(7):660-663. GUO Deyong, FAN Jinzhi, MA Shizhi, et al. Prediction method of coal and gas outburst by analytic hierarchy process and fuzzy comprehensive evaluation[J]. Journal of University of Science and Technology Beijing, 2007, 29(7):660-663. [7]梁冰,秦冰,孙维吉,等.基于综合评判模型的煤与瓦斯突出危险程度预测[J].中国安全生产科学技术,2015,11(7):129-134. LIANG Bing, QIN Bing, SUN Weiji, et al. Prediction on dangerous level of coal and gas outburst based on comprehensive evaluation model [J]. Journal of Safety Science and Technology, 2015, 11(7):129-134. [8]赵旭生.人工神经网络应用于煤与瓦斯突出强度预测的探讨[J].矿业安全与环保,2001,28(4):25-27. ZHAO Xusheng. Application of artificial neural network in forecast of coal and gas outburst intensity[J]. Mining Safety and Environmental Protection, 2001, 28(4):25-27. [9]谭云亮,肖亚勋,孙伟芳.煤与瓦斯突出自适应小波基神经网络辨识和预测模型[J]. 岩石力学与工程学报, 2007, 26(S1):3373-3377. TAN Yunliang, XIAO Yaxun, SUN Weifang. Self-adaptive wavelet neural network for recognizing and predicating outburst of coal and gas[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3373-3377. [10]Zhang R. and Ian S. Lowndes. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts, International Journal of Coal Geology, 2010, 84(2): 141-152. [11]He, X., Chen, W., Nie, B. and Zhang, M. Classification technique for danger classes of coal and gas outburst in deep coal mines’, Safety Science, 2010, 48(2): 173-178. [12]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2000. [13]付强,赵小勇.投影寻踪模型原理及其应用[M].北京:科学出版社,2006. [14]DeJong KA. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor University of Michigan, 1975. [15]王益伟,罗周全,杨彪,等.基于投影寻踪模型的矿山地下水灾害分级评价[J].中国安全生产科学技术,2014,10(3):41-47. WANG Yiwei, LUO Zhouquan, YANG Biao, et al. Ranking evaluation of groundwater disaster in mine based on projection pursuit model[J]. Journal of Safety Science and Technology, 2014, 10(3):41-47.

相似文献/References:

[1]马冬娟,李增华,杨永良,等.基于激波理论的新兴煤矿煤与瓦斯突出事故研究[J].中国安全生产科学技术,2012,8(8):69.
 MA Dong juan,LI Zeng hua,YANG Yong liang,et al.Research on coal and gas outburst accident of Xinxing coal mine based on shock wave theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(1):69.
[2]郑万成,邓小松,李一波.混合煤样中软分层对煤与瓦斯突出的影响[J].中国安全生产科学技术,2012,8(12):5.
 ZHENG Wan cheng,DENG Xiao song,LI Yi bo.Effect of soft layer in the mixed coal on coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(1):5.
[3]吴鑫,隆泗.不同煤粒粒级配比下的煤与瓦斯突出实验研究[J].中国安全生产科学技术,2012,8(12):16.
 WU Xin,LONG Si.Experimental study on the influence of coal particle size on coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(1):16.
[4]石庆礼,杨胜强.数量化理论Ⅲ及其在煤与瓦斯突出危险性评估中的应用[J].中国安全生产科学技术,2013,9(6):69.[doi:10.11731/j.issn.1673-193x.2013.06.013]
 SHI Qing li,YANG Sheng qiang.Quantification theory III and its application in the evaluation of coal and gas otburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):69.[doi:10.11731/j.issn.1673-193x.2013.06.013]
[5]翟盛锐,李忠祥.矿井围岩应力松弛区理论计算与试验研究[J].中国安全生产科学技术,2013,9(7):105.[doi:10.11731/j.issn.1673-193x.2013.07.018]
 ZHAI Sheng rui,LI Zhong xiang.Theoretical calculation and experimental research on slack stress zone of surrounding rocks in coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):105.[doi:10.11731/j.issn.1673-193x.2013.07.018]
[6]杨凯,王寿全,范映冲,等.煤与瓦斯突出危险性的未知权重多属性综合评价模型[J].中国安全生产科学技术,2013,9(10):33.[doi:10.11731/j.issn.1673-193x.2013.10.006]
 YANG Kai,WANG Shou quan,FAN Ying chong,et al.Unknown weight multiple attribute model for evaluating risk of coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):33.[doi:10.11731/j.issn.1673-193x.2013.10.006]
[7]张文涛,吕品,孙晓梅,等.张集矿综采工作面瓦斯治理措施及效果分析[J].中国安全生产科学技术,2014,10(1):103.[doi:10.11731/j.issn.1673-193x.2014.01.017]
 ZHANG Wen-tao,LV Pin,SUN Xiao-mei,et al.Study on gas control measures and effect analysis in mechanized mining face of Zhang Ji Coal Mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):103.[doi:10.11731/j.issn.1673-193x.2014.01.017]
[8]王益伟,罗周全,杨彪,等.基于投影寻踪模型的矿山地下水灾害分级评价[J].中国安全生产科学技术,2014,10(3):41.[doi:10.11731/j.issn.1673-193x.2014.03.007]
 WANG Yi wei,LUO Zhou quan,YANG Biao,et al.Ranking evaluation of groundwater disaster in mine based on projection pursuit model[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):41.[doi:10.11731/j.issn.1673-193x.2014.03.007]
[9]杨力,耿纪超,汪克亮.模糊支持向量机在煤与瓦斯突出预测中的研究[J].中国安全生产科学技术,2014,10(4):103.[doi:10.11731/j.issn.1673-193x.2014.04.018]
 YANG Li,GENG Ji chao,WANG Ke liang.Research on coal and gas outburst prediction using fuzzy support vector machines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):103.[doi:10.11731/j.issn.1673-193x.2014.04.018]
[10]杨飞龙,蒋承林,孙鑫,等.煤与瓦斯突出影响因素评价分析的模糊层次分析方法*[J].中国安全生产科学技术,2009,5(6):53.
 YANG Fei long,JIANG Cheng lin,SUN Xin,et al.Evaluation and analysis influential factors of coal and gas outburst based on fuzzy analytic hierarchy process[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(1):53.

备注/Memo

备注/Memo:
国家自然科学基金重点项目(41430640);国家自然科学基金项目(41172114)
更新日期/Last Update: 2017-03-02