|本期目录/Table of Contents|

[1]陈洁,陈国明,李新宏.基于BN-CREAM的深水井控压井作业风险诱因研究[J].中国安全生产科学技术,2016,12(10):86-91.[doi:10.11731/j.issn.1673-193x.2016.10.014]
 CHEN Jie,CHEN Guoming,LI Xinhong(.Research on risk factors of well killing operation in deep-water well control based on BN-CREAM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):86-91.[doi:10.11731/j.issn.1673-193x.2016.10.014]
点击复制

基于BN-CREAM的深水井控压井作业风险诱因研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年10期
页码:
86-91
栏目:
现代职业安全卫生管理与技术
出版日期:
2016-10-30

文章信息/Info

Title:
Research on risk factors of well killing operation in deep-water well control based on BN-CREAM
作者:
陈洁 陈国明 李新宏
(中国石油大学(华东)海洋油气装备与安全技术研究中心,山东 青岛 266580)
Author(s):
CHEN Jie CHEN Guoming LI Xinhong(
Centre for Offshore Engineering and Safety Technology, China University of Petroleum East china, Qingdao Shandong 266580, China
关键词:
深水压井工艺风险识别CREAM贝叶斯网络后验推理
Keywords:
deep-water well killing technology risk identification CREAM Bayesian network posterior reasoning
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2016.10.014
文献标志码:
A
摘要:
深水井控压井作业是有效控制溢流演化为井喷事故的二级井控工艺屏障。为提高深水井控压井作业可靠性,采用 BN-CREAM方法对其风险诱因进行研究。结合深水井控压井作业特点,考虑共因失效等因素,采用贝叶斯网络方法建立深 水井控压井作业风险演化模型。应用人因可靠性分析CREAM法计算深水压井人因失误先验概率,参考海洋可靠性数据手 册OREDA确定深水井控设备失效先验概率。依托贝叶斯网络的逆向推理能力辨识压井作业的主要风险节点,从而实现对 深水井控压井作业风险诱因的有效预测和评估。研究表明:深水井控压井作业共包含6个关键风险根节点,且压井作业人 因可靠性要低于设备可靠性;3级子节点“压井方法选择不合理”对深水压井作业的成功起到至关重要的作用,需进一 步开展风险分析研究。
Abstract:
The deep-water well killing operation is the secondary well control technological barrier, which can effectively prevent the evolution from overflow to blowout accident. In order to improve the reliability of deep-water well killing operation, the BN-CREAM method was applied to study the risk factors. Combined with the characteristics of deep-water well killing operation, a risk evolution model of deep-water well killing operation was established by using Bayesian network (BN) method considering the common cause failure and other factors. The cognitive reliability and error analysis method (CREAM) for human reliability analysis was adopted to calculate the prior probability of human error in deep- water well killing operation, and the prior probability of equipment failure in deep-water well control was determined referring to Offshore Reliability Data (OREDA). The main risk nodes of well killing operation were identified relying on the reverse reasoning capacity of BN, thereby the effective prediction and evaluation of risk factors for deep-water well killing operation can be achieved. The results showed that the deep-water well killing operation includes six key risk root nodes, and the human reliability is lower than that of equipment. The third grade child node "unreasonable choice of well killing methods" plays a crucial role for the success of deep-water well killing operation, being necessary to carry out a further risk analysis.

参考文献/References:

[1]邓海发. 深水钻井作业重大事故风险评估与控制[D].青岛:中国石油大学(华东),2012.
[2]王志远,邢廷瑞,华美瑞,等. 深水压井节流管线内的气体交换效应分析[J]. 石油钻探技术,2013(3):19-24. WANG Zhiyuan, XING Tingrui, HUA Meirui, et al. Analysis on gas exchange effect in choke line with deepwater well killing[J]. Petroleum Drilling Techniques, 2013(3):19-24.
[3]蔡金亮. 深水钻井压井及控制规律研究[D].重庆:重庆科技学院,2015.
[4]高永海,孙宝江,曹式敬,等.应用事故树法对深水井控进行风险评估[J].石油钻采工艺,2008,30(2):23-27. GAO Yonghai, SUN Baojiang, CAO Shijing, et al. Risk assessment on well control in deepwater drilling based on fault tree analysis[J]. Oil Drilling & Production Technology, 2008,30(2):23-27.
[5]刘刚,李伯尧,徐加兴,等.应用贝叶斯网络识别深水井控主要风险诱因[J].中国安全科学学报,2015,25(5):157- 163. LIU Gang, LI Boyao, XU Jiaxing, et al. Application of bayesian network to identifying principical[J]. China Safety Science Journal,2015,25(5):157-163.
[6]Skogdalen J E, Vinnem J E. Quantitative risk analysis of oil and gas drilling, using Deepwater Horizon as case study[J]. Reliability Engineering & System Safety, 2012, 100: 58-66.
[7]陈洁,陈国明,李新宏,等.深水关井作业可靠性贝叶斯-GO法分析[J].中国安全科学学报,2016,26(4):144-149. CHEN Jie, CHEN Guoming, LI Xinhong, et al. Reliability analysis of deep-water shut-in operation using Bayesian-GO approach[J]. China Safety Science Journal, 2016,26(4):144-149.
[8]Li X, Chen G, Zhu H. Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network[J]. Process Safety and Environmental Protection, 2016(103): 163-173.
[9]《海洋钻井手册》编委会,海洋钻井手册[M].北京:石油工业出版社,2009:483-502.
[10]Skalle P, Podio A L. Trends extracted from 800 Gulf Coast blowouts during 1960-1996[C].IADC/SPE drilling conference, Society of Petroleum Engineers, 1998.
[11]Abimbola M, Khan F, Khakzad N. Dynamic safety risk analysis of offshore drilling[J]. Journal of Loss Prevention in the Process Industries, 2014(30): 74-85.
[12]RAUSAND M (Norway).风险评估理论、方法与应用[M].刘一骝,译.北京:清华大学出版社,2013:76-80.
[13]廖斌,高慧,刘敏,等. 基于CREAM的校车驾驶员人因可靠性分析方法[J]. 中国安全生产科学技术,2012,8 (11):145-150. LIAO Bin, GAO Hui, LIU Min, et al. Method of human reliability analysis on school bus driver based on CREAM[J]. Journal of Safety Science and Technology, 2012,8(11):145-150..
[14]罗凤娥,郭爽. 基于改进CREAM的签派员与飞行员间人因可靠性分析[J]. 现代电子技术,2015,38(2):18-21. LUO Fenge, GUO Shuang. Reliability analysis of human factor between dispatcher and pilot based on improved CREAM[J]. Modern Electronics Technique, 2015,38(2):18-21.
[15]孙瑞山,王鑫. CREAM失误概率预测法在驾驶舱机组判断与决策过程中的应用[J].中国安全生产科学技 术,2010,6(6):40-45. SUN Ruishan,WANG Xin. Application of failure probability of CREAM for judgement and decision making in the cockpit[J].Journal of Safety Science and Technology,2010,6(6):40-45.
[16]梁凯林.基于CREAM的海上交通事故人因分析[D].大连:大连海事大学,2014.
[17]OREDA. Offshore reliability data handbook (4th Edition)[EB/OL]. SINTEF Industrial Management,Det Norske Veritas, 2002.

相似文献/References:

[1]许红军,田俊改.支线机场安全动态预警技术研究[J].中国安全生产科学技术,2011,7(5):123.
 XU Hong-jun,TIAN Jun-gai.Dynamic hazard identification and evaluation techniques for regional airport safety and security[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(10):123.
[2]闫晓,赵东风,孟亦飞.大型LNG储罐区卸料管线泄漏事故定量风险分析[J].中国安全生产科学技术,2013,9(4):72.[doi:10.11731/j.issn.1673-193x.2013.04.013]
 YAN Xiao,ZHAO Dong feng,MENG Yi fei.Quantitative risk analysis on leakage accident of unloading pipeline in large LNG storage tank farm[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(10):72.[doi:10.11731/j.issn.1673-193x.2013.04.013]
[3]贺辉宗,王廷春,徐 峰,等.沙特炼化工程项目安全防范保障体系构建与探讨[J].中国安全生产科学技术,2014,10(2):183.[doi:10.11731/j.issn.1673-193x.2014.02.032]
 HE Hui zong,WANG Ting chun,XU Feng,et al.Construction and discussion on security guarantee system of saudi refinery project[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(10):183.[doi:10.11731/j.issn.1673-193x.2014.02.032]
[4]孙开畅,李权,尹志伟.水利工程高危作业人因评价体系中的认知图理论研究[J].中国安全生产科学技术,2016,12(12):128.[doi:10.11731/j.issn.1673-193x.2016.12.022]
 SUN Kaichang,LI Quan,YIN Zhiwei.Study on cognitive map theory in human factors evaluation system for high risk operation of hydraulic engineering[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):128.[doi:10.11731/j.issn.1673-193x.2016.12.022]
[5]马增辉,徐长峰,王明锋,等.气藏型地下储气库完整性管理体系及风险识别[J].中国安全生产科学技术,2022,18(3):76.[doi:10.11731/j.issn.1673-193x.2022.03.011]
 MA Zenghui,XU Changfeng,WANG Mingfeng,et al.Integrity management system and risk identification of gas reservoir type underground gas storage[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(10):76.[doi:10.11731/j.issn.1673-193x.2022.03.011]
[6]刘平,金学强,许家铭,等.基于本体的地铁车站施工安全风险知识自动化识别*[J].中国安全生产科学技术,2023,19(8):12.[doi:10.11731/j.issn.1673-193x.2023.08.002]
 LIU Ping,JIN Xueqiang,XU Jiaming,et al.Ontology-based automatic identification on safety risk knowledge of subway station construction[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(10):12.[doi:10.11731/j.issn.1673-193x.2023.08.002]

备注/Memo

备注/Memo:
国家工信部第七代超深水钻井平台创新专项
更新日期/Last Update: 2016-11-30