|本期目录/Table of Contents|

[1]于浩,练章华,林铁军,等.页岩气体积压裂过程中套管失效机理研究[J].中国安全生产科学技术,2016,12(10):37-43.[doi:10.11731/j.issn.1673-193x.2016.10.006]
 YU Hao,LIAN Zhanghua,LIN Tiejun,et al.Study on failure mechanism of casing in stimulated reservoir volume fracturing of shale gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):37-43.[doi:10.11731/j.issn.1673-193x.2016.10.006]
点击复制

页岩气体积压裂过程中套管失效机理研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年10期
页码:
37-43
栏目:
学术论著
出版日期:
2016-10-30

文章信息/Info

Title:
Study on failure mechanism of casing in stimulated reservoir volume fracturing of shale gas
作者:
于浩1练章华1林铁军1鲍俊锟2
(1.西南石油大学 油气藏地质及开发工程国家重点实验室,四川 成都 610500; 2.中国石油集团川庆钻探工程有限公司钻采工程技术研究院,四川 广汉 618300) 摘要:为了研究体积压裂过程中套管失效问题,基于页岩气水平井X-1h钻完井资料,
Author(s):
YU Hao1 LIAN Zhanghua1 LIN Tiejun1 BAO Junkun2
1.State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu Sichuan 610500, China; 2. Research Institute of Drilling Engineering and Technology, Chuanqing Drilling Engineering Company, CNPC, Guanghan Sichuan 618300, China
关键词:
体积压裂套管变形失效数值模拟岩石损伤安全
Keywords:
stimulated reservoir volume fracturing casing deformation failure numerical simulation rock damage safety
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.10.006
文献标志码:
A
摘要:
为了研究体积压裂过程中套管失效问题,基于页岩气水平井X-1h钻完井资料,提出了微地震数据反演方法,并结 合岩石断裂力学和岩石损伤力学,建立了X-1h体积压裂地层-多簇射孔-套管有限元模型。有限元结果表明:体积压裂范 围内的地应力场发生明显变化,甚至出现“张应力”区和“零应力”区的应力反转现象,该特征将不同程度地使套管在 地层中出现“悬空”状态,导致套管沿其径向产生一定程度的挠度变形,沿轴向套管呈现“S”型变形。适当增加压裂 段与段之间的间距,缩短多簇射孔压裂段的有效长度,可以有效地降低或控制水平段套管的“S”型变形量。该研究方 法和研究成果为体积压裂技术的套管变形失效控制以及页岩气安全生产提供了理论依据。
Abstract:
Aiming at the problem of casing failure in the process of stimulated reservoir volume fracturing, an inversion method of microseismic data was put forward based on the drilling and well completion data of X-1h shale gas horizontal well. A finite element model of the stimulated reservoir volume fracturing formation, multi-clustering perforation and casing was established for X-1h well by combining with rock fracture mechanics and rock damage mechanics. The results showed that the in-situ stress field in the range of stimulated reservoir volume fracturing changes obviously, even the stress reversal phenomena of tension stress area and zero stress area occur. This characteristic causes the "overhang" status of casing in the formation with different degree, which results in a certain extent deflection deformation of casing in the radial direction and a S-shape deformation of casing in the axial direction. The S-shape deformation of casing in horizontal section can be effectively decreased or controlled by appropriately increasing the interval of fracturing segments and shortening the effective length of multi-clustering perforation fracturing segments. The method and achievements provide the theoretical basis for the control of casing deformation failure with stimulated reservoir volume fracturing technology and the work safety of shale gas.

参考文献/References:

[1]吴奇, 胥云, 王晓泉, 等. 非常规油气藏体积改造技术—内涵、优化设计与实现 [J]. 石油勘探与开发, 2012, 39(3): 352-358. WU Qi, XU Yun, WANG Tengfei, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation [J]. Petroleum Exploration and Development, 2012, 39(3): 352-358.
[2]叶成林, 王国勇. 体积压裂技术在苏里格气田水平井开发中的应用 [J]. 石油与天然气化工, 2013, 42(4): 382-386. YE Chenglin, WANG Guoyong. Application of stimulated reservoir volume to horizontal wells in Sulige gas field[J]. Chemical Engineering of Oil & Gas, 2013, 42(4): 382-386.
[3]王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识 [J]. 石油与天然气地质, 2014, 35(3): 425-430. WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling area [J]. Oil & Gas Geology, 2014, 35(3): 425-430.
[4]Lian Z H, Yu H, Lin T J, et al. A study on casing deformation failure during multi-stage hydraulic fracturing for the stimulated reservoir volume of horizontal shale wells[J]. Journal of Natural Gas Science and Engineering, 2015(23): 538-546.
[5]贾江鸿. 热采井套损机理及套管强度优化设计 [J]. 中国安全生产科学技术, 2011, 7(9): 121-125. JIA Jianghong. Casing failure mechanism of thermal production wells and casing strength optimization design [J]. Journal of Safety Science and Technology, 2011, 7(9): 121-125.
[6]李金波, 舒欣欣, 郑茂盛. 含缺陷油套管的抗弯曲特性研究 [J]. 中国安全生产科学技术, 2006, 2(5): 3-8. LI Jinbo, SHU Xinxin, ZHENG Maosheng. Bending resistant behavior of local defected oil well pipes [J]. Journal of Safety Science and Technology, 2006, 2(5): 3-8.
[7]张华平. 辽河稠油热采现场硫化氢的防范与治理建议 [J]. 中国安全生产科学技术, 2009, 5(2): 178-180. ZHANG Huaping. Prevention and treatment recommendations of H2S at the scene of heavy oil thermal recovery in Liaohe Oilfield [J]. Journal of Safety Science and Technology, 2009, 5(2): 178-180.
[8]Adachi J, Siebrits E, Peirce A. Computer simulation of hydraulic fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44: 739-757.
[9]WEI Y, Economides M J. Transverse hydraulic fractures from a horizontal well [J]. SPE 94671, 2005.
[10]程远方, 王桂华, 王瑞和. 水平井水力压裂增产技术中的岩石力学问题 [J]. 岩石力学与工程学报, 2004, 23(14): 2463-2466. CHENG Yuanfang, WANG Guihua, WANG Ruihe. Rock mechanics problems in horizontal well fracturing [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2463-2466.
[11]谢维扬, 李晓平. 水力压裂缝导流的页岩气藏水平井稳产能力研究 [J]. 天然气地球科学. 2012, 23(2): 387-392. XIE Weiyang, LI Xiaoping. Steady productivity of horizontal well in hydraulic fracture Induced shale gas reservoir [J]. Natural Gas Geoscience, 2012, 23(2): 387-392.
[12]赵海峰, 陈勉, 金衍, 等. 页岩气藏网状裂缝系统的岩石断裂动力学 [J]. 石油勘探与开发, 2012, 39(4): 465-470. ZHAO Haifeng, CHEN Mian, JIN Yan, et al. Rock fracture kinetics of the fracture mesh system in shale gas reservoirs [J]. Petroleum Exploration and Development, 2012, 39(4): 465-470.
[13]赵金洲, 王松, 李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业, 2012, 32(4): 46-49. ZHAO Jinzhou, WANG song, LI Yongming. Difficulties and key techniques in the fracturing treatment of shale gas reservoirs [J]. Natural Gas Industry, 2012, 32(4): 46-49.
[14]董世泰, 高红霞. 微地震监测技术及其在油田开发中的应用 [J]. 石油仪器, 2004, 18(5): 5-8. DONG Shitai, GAO Hongxia. Microseismic monitoring technology and its application to oilfield development [J]. Petroleum Instruments, 2004, 18(5): 5-8.
[15]黄荣樽. 水力压裂裂缝的起裂和扩展 [J]. 石油勘探与开发, 1981, 8(5): 62-74. HUANG Rongzun. Mechanism of hydraulically created fracture breakdown and propagation [J]. Petroleum Exploration and Development, 1981, 8(5): 62-74.
[16]田锋. 裂缝体的弹性模量和裂缝密度 [J]. 地质学报, 2007, 81(10): 1338-1344. TIAN Feng. Elasticity modulus and fracture density in the rocks with crevices [J]. Acta Geologica Sinica, 2007, 81(10): 1338-1344.
[17]张汝生, 王强, 张祖国, 等. 水力压裂裂缝三维扩展ABAQUS数值模拟研究 [J]. 石油钻采工艺, 2012, 34(6): 69-72. ZHANG Rusheng, WANG Qiang, ZHANG Zuguo, et al. Research of ABAQUS numerical simulation of 3D fracture propagation in hydraulic fracturing process [J]. Oil Drilling & Production, 2012, 34(6): 69-72.
[18]Camanho P P, Davila C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials [R]. NASA/TM-2002-211737, 2002: 1-37.
[19]Turon A, Camanho P P, Costa J. A damage model for the simulation of delamination in advanced composites under variable-model loading [J]. Mechanics of Materials, 2006(38): 1072-1089.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51574198,51504207);国家教育部博士点基金项目(20135121110005)
更新日期/Last Update: 2016-11-30