|本期目录/Table of Contents|

[1]赵发军,陈学习,刘彦伟.损失瓦斯量与煤的破坏类型关系研究[J].中国安全生产科学技术,2016,12(10):30-36.[doi:10.11731/j.issn.1673-193x.2016.10.005]
 ZHAO Fajun,CHEN Xuexi,LIU Yanwei.Study on relationship between gas loss quantity and destruction types of coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):30-36.[doi:10.11731/j.issn.1673-193x.2016.10.005]
点击复制

损失瓦斯量与煤的破坏类型关系研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年10期
页码:
30-36
栏目:
学术论著
出版日期:
2016-10-30

文章信息/Info

Title:
Study on relationship between gas loss quantity and destruction types of coal
作者:
赵发军13陈学习2 刘彦伟13
(1.河南理工大学 安全科学与工程学院,河南 焦作 454000;2. 华北科技学院,河 北 廊坊065201; 3. 河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地,河南 焦作 454000)
Author(s):
ZHAO Fajun13 CHEN Xuexi2 LIU Yanwei13
1. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454000, China; 2. North China Institute of Science and Technology, Langfang Hebei 065201, China; 3. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo Henan 454000, China
关键词:
损失瓦斯量孔隙结构煤的类型 扩散系数
Keywords:
gas loss quantity pore structure coal type diffusion coefficient
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.10.005
文献标志码:
A
摘要:
损失瓦斯量是准确获取煤层瓦斯含量的基础数据。通过实验室测定和不同损失量计算模型的对比分析,表明采用 传统的t法和幂函数法获取损失瓦斯量时,Ⅱ类、Ⅲ类和Ⅳ类煤符合性较好,误差小于20%,I类煤和Ⅴ类煤的损失瓦斯 量误差为25%~31%;煤中孔隙结构的差异是误差产生的原因,I类煤中原生孔隙占多数,Ⅴ类煤的孔隙受构造影响最大, 其它类型煤的孔隙结构介于I类煤和Ⅴ类煤之间;对于I类煤和Ⅴ类煤,采用表征原生孔隙和构造孔隙双孔隙特征的模型 获得的损失瓦斯量误差低于10%。研究结论对煤层瓦斯含量测定具有重要意义。
Abstract:
The gas loss quantity is the basic data to accurately obtain the gas content in coal seam. Through laboratory tests and comparative analysis on different calculation models of gas loss quantity, it showed that when adopting the traditional t method and power-function method to obtain the gas loss quantity, the conformance of class II, III and IV coal were better, with the error less than 20%, while the errors of gas loss quantity for class I and V coal were 25%-31%. The errors were caused by the difference of pore structure in coal. The primary pores were in the majority for class I coal, and the structure had the greatest influence on the pores of class V coal, while the pore structure of other classes coal lay between class I coal and class V coal. The errors of gas loss quantity obtained by the model with representation of dual pore characteristics about primary pore and structure pore were less than 10% for class I coal and class V coal. The results are of great significance for the measurement of gas content in coal seam.

参考文献/References:

[1]GB/T 23250-2009 煤层瓦斯含量井下直接测定方法[S].2009:8-9.
[2]R.M.Barrer, Diffusion in and through Solid [M]. Cambridge University Press, 1951.
[3]孙重旭. 煤样解吸瓦斯泄出的研究及其突出煤层煤样瓦斯解吸的特点[A]. 煤与瓦斯突出第三次学术论文选集[ C], 重庆研究所, 1983.
[4]K.Winter & H.Janas. Gas Emission characteristics of coal and Methods of Determining the Desorbable Gas Content by Means of Desorbometers[C]. XIV International Conference of Coal Mine Safety Research, 1996.
[5]P.G.Sevenster. Diffusion of Gases through Coal[J]. Fuel, 1959, 38(5):16-19.
[6]宋士钊, 王佑安译. 煤与瓦斯突出[M]. 北京: 中国工业出版社, 1966.
[7]E.M.Airey. Gas Emission from Broken Coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(6): 475-494.
[8]中国科学技术情报研究所重庆分所. 国外煤和瓦斯突出资料汇编[G]. 重庆: 科学技术文献出版社重庆分社, 1978.
[9]杨其銮, 王佑安. 煤屑瓦斯扩散理论及其应用[J]. 煤炭学报, 1986, 23(3): 87-94. YANG Qiluan, WANG Youan. Theory of methane diffusion from coal cuttings and its application[J]. Journal of China Coal Society, 1986, 23(3): 87-94.
[10]刘彦伟. 煤粒瓦斯放散规律、机理与动力学模型研究[D]. 焦作: 河南理工大学,2011.
[11]李志强,王司建,刘彦伟,等. 基于动扩散系数新扩散模型的构造煤瓦斯扩散机理[J]. 中国矿业大学学报, 2015,44(5):836-842. LI Zhiqiang, WANG Sijian, LIU Yanwei, et al. Mechanism of gas diffusion in tectonic coal based on a diffusion model with dynamic diffusion coefficien[J]. Journal of China University of Mining & Technology, 2015, 44(5):836-842.
[12]聂百胜,杨涛,李祥春,等.煤粒瓦斯解吸扩散规律实验[J].中国矿业大学学报,2013, 42(6): 975-981. NIE Baisheng, Yang Tao, LI Xiangchun, et al. Research on diffusion of methane in coal particls[J]. Journal of China University of Minging & Technolog, 2013, 42(6): 975-981.
[13]简星,关平,张巍. 煤中CO2 的吸附和扩散:实验与建模[J]. 中国科学:地球科学,2012,42(4):492-504. JIAN Xing, GUAN Ping,ZHANG Wei. Adsorption and diffusion of CO2 in coal: experimental and modeling[J ]. Chinese Science Earth Science, 2012,42(4):492-504.
[14]温志辉. 构造煤瓦斯解吸规律的实验研究[D]. 焦作: 河南理工大学, 2008.
[15]贾东旭, 陈向军. 强烈地质构造煤瓦斯解吸规律的试验研究[J]. 煤炭科学技术, 2009, 37(6):64-66. JIA Dongxu, CHEN Xiangjun. Test and research on gas desorption law of intensive failed coal[J]. Journal of Coal Science and Technology, 2009, 37(6):64-66.
[16]富向,王魁军,杨天鸿.构造煤的瓦斯放散特征[J]. 煤炭学报, 2008, 33(7):775-779. FU Xiang, WANG Kuijun, YANG Tianhong. Gas irradition feature of tectonic coal[J]. Journal of China Coal society, 2008, 33(7):775-779.
[17]李红涛, 齐黎明, 陈学习. 密闭液封堵条件下的瓦斯解吸规律实验研究[J]. 中国安全生产科学技术, 2012, 8(3):18-21. LI Hongtao, QI Liming, CHEN Xuexi. Experiment research on the gas desorption rule of sealing fluid enveloping coal core[J]. Journal of Safety Science and Technology , 2012, 8(3):18-21.
[18]Erterkin T, King G R, Schwere F C. Dynamic gas slippage: a unique dua-mechanism approach to the flow of gas in tight formations[J]. SPE J. Form. Eval, 1986,1(1):43-52.
[19]赵发军. 吸附过程中甲烷分子和煤表面的作用[J]. 河南理工大学学报(自然科学版),2015,31(2):158-161. ZHAO Fajun. Interaction of methane molecules and coal surface during adsorption process[J]. Journal of Henan Polytechnic University(Natural Science Edition),2015,31(2):158-161.
[20]中华人民共和国煤炭工业部. 防治煤与瓦斯突出细则[M]. 北京:煤炭工业出版社,1995.
[21]CUI X, BUSTIN R M, DIPPLE G. Selective transport of CO2 , CH4 and N2 in coals: insights from modeling of experimental gas adsorption data[J]. Fuel, 2004, 83(3):293-303.

相似文献/References:

[1]郝富昌,抄隆霄,孙丽娟,等.软硬煤瓦斯解吸规律及影响因素的实验研究[J].中国安全生产科学技术,2017,13(3):42.[doi:10.11731/j.issn.1673-193x.2017.03.006]
 HAO Fuchang,CHAO Longxiao,SUN Lijuan,et al.Experimental study on gas desorption laws and influence factors of soft and hard coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):42.[doi:10.11731/j.issn.1673-193x.2017.03.006]
[2]王玲玲,王兆丰,霍肖肖,等.高温高压下煤孔隙结构的变化对瓦斯吸附特性的影响[J].中国安全生产科学技术,2018,14(12):97.[doi:10.11731/j.issn.1673-193x.2018.12.015]
 WANG Lingling,WANG Zhaofeng,HUO Xiaoxiao,et al.Influence of pore structure change on gas adsorption characteristics of coal under high temperature and high pressure[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):97.[doi:10.11731/j.issn.1673-193x.2018.12.015]
[3]步允川,牛会永,邱天,等.预氧化浸水煤体表面结构变化及复燃特性*[J].中国安全生产科学技术,2021,17(11):32.[doi:10.11731/j.issn.1673-193x.2021.11.005]
 BU Yunchuan,NIU Huiyong,QIU Tian,et al.Surface structure changes and re-ignition characteristics of pre-oxidized and water-immersed coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(10):32.[doi:10.11731/j.issn.1673-193x.2021.11.005]
[4]刘帅强,王兆丰,马树俊,等.基于压力与温度对损失瓦斯量影响试验研究*[J].中国安全生产科学技术,2021,17(12):92.[doi:10.11731/j.issn.1673-193x.2021.12.015]
 LIU Shuaiqiang,WANG Zhaofeng,MA Shujun,et al.Experimental study on influence of pressure and temperature on gas loss amount[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(10):92.[doi:10.11731/j.issn.1673-193x.2021.12.015]
[5]李铭杰,卢守青,司书芳,等.粒径损伤对原生煤和构造煤孔隙结构与分形特征的影响*[J].中国安全生产科学技术,2022,18(7):88.[doi:10.11731/j.issn.1673-193x.2022.07.013]
 LI Mingjie,LU Shouqing,SI Shufang,et al.Influence of particle size damage on pore structure and fractal characteristics of intact coal and tectonic coal[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(10):88.[doi:10.11731/j.issn.1673-193x.2022.07.013]

备注/Memo

备注/Memo:
河北省矿井灾害防治重点实验室开放基金项目(KJZH2014K05);国家自然科学基金项目(51374095, 51404099)
更新日期/Last Update: 2016-11-30