|本期目录/Table of Contents|

[1]翟晓荣,张红梅,窦仲四,等.基于不同岩层组合对底板阻水效应的流固耦合机理研究[J].中国安全生产科学技术,2016,12(7):16-21.[doi:10.11731/j.issn.1673-193x.2016.07.003]
 ZHAI Xiaorong,ZHANG Hongmei,DOU Zhongsi,et al.Study on fluid-solid coupling mechanism for water resistance effect of coal floor based on different combination of rock strata[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(7):16-21.[doi:10.11731/j.issn.1673-193x.2016.07.003]
点击复制

基于不同岩层组合对底板阻水效应的流固耦合机理研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年7期
页码:
16-21
栏目:
学术论著
出版日期:
2016-07-30

文章信息/Info

Title:
Study on fluid-solid coupling mechanism for water resistance effect of coal floor based on different combination of rock strata
作者:
翟晓荣1张红梅1窦仲四1吴基文1沈书豪1周盛全2
(1. 安徽理工大学 地球与 环境学院,安徽 淮南 232001;2. 安徽理工大学 土木建筑学院,安徽 淮南 232001)
Author(s):
ZHAI Xiaorong1 ZHANG Hongmei1 DOU Zhongsi1 WU Jiwen1 SHEN Shuhao1 ZHOU Shengquan2
(1.School of Earth and Environment, Anhui University of Science and Technology, Huainan Anhui 232001, China; 2.School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan Anhui 232001, China)
关键词:
流固耦合煤层底板阻水FLAC3D
Keywords:
fluid-solid coupling coal floor water resistance FLAC3D
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2016.07.003
文献标志码:
A
摘要:
为了探究不同岩层组合底板对承压水的阻隔效果,以淮北矿区下组煤底板为研究 对象,建立了三种不同组合特征底板模型。基于FISH语言对FLAC3D软件进行二次开发, 对流固耦合条件下不同组合特征底板采动应力及围岩渗透性进行了综合分析。结果表明 :流固耦合条件下,底板采后应力转换点深度较不考虑底板水压条件下加深,且底板深 部出现了明显的卸压现象;硬软型底板采后卸荷程度及应力转换点降幅最大,而软硬相 间型底板受最小;硬软型底板采后渗透性提高4.5倍,而软硬相间型底板仅提高1.4倍, 研究结果揭示出软硬相间岩层组合底板阻水效果最好,而硬软型底板最差。
Abstract:
To investigate the resistance effect of coal floor with different combination of rock strata on confined water, taking the coal floor of lower coal group in Huaibei mining area as research object, three coal floor models with different combination characteristics were established. The secondary development was conducted on FLAC3D software based on FISH language, then the comprehensive analysis on the mining stress of coal floor and the permeability of surrounding rock with different combination characteristics under the condition of fluid-solid coupling was carried out. The results showed that under the condition of fluid-solid coupling, the depth of stress transition point for coal floor after mining was larger than that without considering the condition of floor water pressure, and the obvious pressure relief phenomenon appeared in the deep floor. The decreasing amplitude of unloading degree and stress transition point for hard-soft type coal floor after mining were the largest, while those for alternated soft-hard type coal floor were the smallest. The permeability of hard-soft type coal floor after mining increased by 4.5 times, while that of alternated soft-hard type coal floor increased by 1.5 times only. It revealed that the water resistance effect of coal floor by the combination of alternated soft-hard rock strata is the best, while that by the hard-soft type coal floor is the worst.

参考文献/References:

[1]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大 学出版社,2003:18-20.
[2]张蕊,姜振泉,于宗仁,等. 煤层底板采动破坏特征综合测试及数值模拟研究[J ]. 采矿与安全工程学报,2013,30(4):531-537. ZHANG Rui, JIANG Zhenquan, YU Zongren, et al. Comprehensive testing and numerical analysis on the failure characteristics of mining coal seam floor [J]. Journal of Mining & Safety Engineering, 2013,30(4):531-537.
[3]卢兴利,刘泉声,武昌勇,等. 断层破裂带附近采场采动效应的流固耦合分析[J ]. 岩土力学,2009,30(增):165-168. LU Xingli, LIU Quansheng, WU Changyong, et al. Hydro-mechanical coupling analysis of mining effect around fault fractured zone [J]. Rock and Soil Mechanics,2009,30(S):165-168.
[4]牛建立. 煤层底板采动岩水耦合作用与高承压水体上安全开采技术研究[D]. 西 安:煤科总院西安研究院,2008.
[5]胡巍,徐德金. 有限元强度折减法在底板突水风险评价中的应用[J]. 煤炭学报 ,2013,38(1):27-32. HU Wei, XU Dejin. Application of finite element strength reduction method to risk assessment of groundwater inrush from coal seam floor [J]. Journal of China Coal Society,2013,38(1):27-32.
[6]姚多喜,鲁海峰.煤层底板岩体采动渗流场-应变场耦合分析[J].岩石力学与 工程学报,2012,31(增):2738-2744. YAO Duoxi, LU Haifeng. Seepage field-strain field coupling analysis for rock masses of coal seam floor during mining above confined aquifer [J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S):2738-2744.
[7]吴基文,樊成.煤层底板岩体阻水能力原位测试研究[J].岩土工程学报,2003 ,25(1):67-70. WU Jiwen, FAN Cheng. Study on in-situ measurement of water-resisting ability of coal seam floor rock mass [J]. Chinese Journal of Geotechnical Engineering,2003,25(1):67-70.
[8]黎良杰. 采场底板突水机理研究[D]. 徐州:中国矿业大学,1995.
[9]吴基文. 煤层底板采动效应与阻水性能的岩体结构控制作用研究[D]. 徐州:中 国矿业大学,2007.
[10]李运成. 煤层底板岩体结构对采动效应的影响研究[D]. 淮南:安徽理工大学 ,2006.
[11]WANG J A,PARK H D. Fluid permeability of sedimentary rocks in a complete stress-strain process [J]. Engineering Geology,2002,63(3):291 -300.
[12]涂劲松,蔡金龙. 破碎岩体流变特性及其应用研究[J]. 中国安全生产科学技 术,2014,10(7):38-43. TU Jinsong, CAI Jinlong. Study on rheological characteristics of broken rock mass and its application [J]. Journal of Safety Science and Technology, 2014,10(7):38-43.
[13] 李世平,李玉寿,吴振业. 岩石全应力-应变过程对应的渗透率-应变方程[J] . 岩土工程学报,1995,17(2):13-19. LI Shiping, LI Yushou, WU Zhenye. The permeability-strain equations related to complete stress-strain path of the rock [J]. Chinese Journal of Geotechnical Engineering,1995,17(2):13-19.
[14]ELSWORTH D,BAI M. Flow-deformation response of dual-porosity media [ J]. Journal of Geotechnical Engineering,1992,118(1):107-124.
[15]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社 ,1997:23-25.
[16]卢爱红,张连英. 水平构造应力对煤层底板突水的影响分析[J]. 采矿与安全 工程学报,2010,27(3):395-398. LU Aihong, ZHANG Lianying. Effect of the horizontal tectonic stress on floor water-inrush [J]. Journal of Mining & Safety Engineering,2010,27(3): 395-398.
[17]许学汉,王杰. 煤矿突水预测预报研究[M]. 北京:地质出版社,1992:88.

相似文献/References:

[1]赵小平,任 颖,白本祥,等.尾矿库初期坝稳定性的合成孔径雷达干涉变形检测与流固耦合数值模拟分析[J].中国安全生产科学技术,2014,10(5):17.[doi:10.11731/j.issn.1673-193x.2014.05.003]
 ZHAO Xiaoping,REN Ying,BAI Benxiang,et al.INSAR deformation detection and fluid-solid coupling numerical simulation analysis on the stability of initial dam in tailings reservoir[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(7):17.[doi:10.11731/j.issn.1673-193x.2014.05.003]
[2]翟晓荣,吴基文,沈书豪,等.断层带边界岩体采动应力特征相似材料模拟研究[J].中国安全生产科学技术,2014,10(5):56.[doi:10.11731/j.issn.1673-193x.2014.05.009]
 ZHAI Xiaorong,WU Jiwen,SHEN Shuhao,et al.Study on similar material simulation of rock mass mining stress at fault boundary[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(7):56.[doi:10.11731/j.issn.1673-193x.2014.05.009]
[3]梅国栋,王云海.三维流固耦合数值模拟在铜锣山隧道安全性评价中的应用*[J].中国安全生产科学技术,2009,5(6):57.
 MEI Guo dong,WANG Yun hai.The application of 3D fluidsolid coupling numerical simulation in the safety accessment of TongLuo Shan tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(7):57.
[4]张杰,梁政,韩传军.基于流固耦合的多弯管路系统动力学分析[J].中国安全生产科学技术,2014,10(8):5.[doi:10.11731/j.issn.1673-193x.2014.08.001]
 ZHANG Jie,LIANG Zheng,HAN Chuan-jun.Dynamics analysis of more curved pipe system based on fluid-structure coupling[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(7):5.[doi:10.11731/j.issn.1673-193x.2014.08.001]
[5]蔡仲秋.复杂地质条件下多含水层底板突水防治[J].中国安全生产科学技术,2015,11(3):112.[doi:10.11731/j.issn.1673-193x.2015.03.018]
 CAI Zhong-qiu.Water burst prevention in multi-aquifer floor under complicated geological conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(7):112.[doi:10.11731/j.issn.1673-193x.2015.03.018]
[6]付冉,姚安林,刘霖聪,等.穿越水域输气管道裸露悬空段的应力敏感性分析[J].中国安全生产科学技术,2015,11(11):106.[doi:10.11731/j.issn.1673-193x.2015.11.018]
 FU Ran,YAO An-lin,LIU Lin-cong,et al.Analysis on stress sensitivity for exposed and suspended section of water crossing gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(7):106.[doi:10.11731/j.issn.1673-193x.2015.11.018]
[7]高召宁,郑志伟,潘继良,等.采动与承压水耦合作用下煤层底板的 力学效应及破坏机理分析[J].中国安全生产科学技术,2016,12(3):10.[doi:10.11731/j.issn.1673-193x.2016.03.002]
 GAO Zhaoning,ZHENG Zhiwei,PAN Jiliang,et al.Analysis on mechanical effect and damage mechanism of coal seam floor under the coupling action of mining and confined water[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(7):10.[doi:10.11731/j.issn.1673-193x.2016.03.002]
[8]许根富,王飞,赵哲明,等.石化压力管道冲蚀失效数值模拟及影响因素分析[J].中国安全生产科学技术,2016,12(4):143.[doi:10.11731/j.issn.1673-193x.2016.04.026]
 XU Genfu,WANG Fei,ZHAO Zheming,et al.Numerical simulation and influence factor analysis on erosion-corrosionfailure of petrochemical pressure pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(7):143.[doi:10.11731/j.issn.1673-193x.2016.04.026]
[9]黎伟,宋伟,李乃禾,等.滑套式井下安全阀设计及动态特性分析[J].中国安全生产科学技术,2017,13(2):159.[doi:10.11731/j.issn.1673-193x.2017.02.028]
 LI Wei,SONG Wei,LI Naihe,et al.Design and dynamic characteristic analysis of sliding-sleeve subsurface safety valve[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):159.[doi:10.11731/j.issn.1673-193x.2017.02.028]
[10]施永威,王宗林,梁冰,等.本煤层顺层预抽瓦斯钻孔间距数值模拟研究[J].中国安全生产科学技术,2017,13(5):21.[doi:10.11731/j.issn.1673-193x.2017.05.004]
 SHI Yongwei,WANG Zonglin,LIANG Bing,et al.Study on numerical simulation of borehole spacing for gas pre-drainage along coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(7):21.[doi:10.11731/j.issn.1673-193x.2017.05.004]

备注/Memo

备注/Memo:
国家自然科学基金项目(41272278);安徽高校自然科学重点项目,矿山 地质灾害防治安徽省重点实验室项目(KJ2016A826);安徽省高校自然科学基金项目( KJ2016SD19)
更新日期/Last Update: 2016-08-04