|本期目录/Table of Contents|

[1]张杰,梁政,韩传军.基于流固耦合的多弯管路系统动力学分析[J].中国安全生产科学技术,2014,10(8):5-10.[doi:10.11731/j.issn.1673-193x.2014.08.001]
 ZHANG Jie,LIANG Zheng,HAN Chuan-jun.Dynamics analysis of more curved pipe system based on fluid-structure coupling[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):5-10.[doi:10.11731/j.issn.1673-193x.2014.08.001]
点击复制

基于流固耦合的多弯管路系统动力学分析
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
10
期数:
2014年8期
页码:
5-10
栏目:
学术论著
出版日期:
2014-08-31

文章信息/Info

Title:
Dynamics analysis of more curved pipe system based on fluid-structure coupling
作者:
张杰梁政韩传军
(西南石油大学 机电工程学院,四川 成都 610500)
Author(s):
ZHANG Jie LIANG Zheng HAN Chuan-jun
(School of Mechatronic Engineering, Southwest Petroleum University, Chengdu Sichuan 610500, China)
关键词:
多弯管路流固耦合固有频率非定常流动力响应
Keywords:
more curved pipe fluidstructure coupling natural frequency unsteady flow dynamic response
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2014.08.001
文献标志码:
A
摘要:
为研究多弯管路系统的动力学特性,基于流固耦合和有限元原理,对充液L型管道的固有特性进行了数值模拟,并与TMM(传递矩阵法)进行了对比,证明了数值模型的合理性。建立了水下多弯管路的数值模型,进行了流固耦合模态分析,研究了壁厚、管径对管路固有频率的影响规律。并对非定常流下多弯管路系统的动力响应进行了分析,研究了壁厚和波动速度对管道振动的影响规律。研究结果表明:考虑管内、外流体与管道三者耦合时的管道固有频率比只考虑管内流体与管道二者耦合和不考虑耦合时小,但流固耦合作用对管道模态振型的影响较小;管道的固有频率随管径和壁厚的增大而增大, 气体与管道之间耦合作用对管道固有频率的影响小于液体;非定常流下,多弯管路的振动幅值随着壁厚的增大而减小,随着波动速度的增大而增大。
Abstract:
In order to study the dynamic characteristics of more curved pipe system, according to the fluidstructure coupling and the finite element theory, the inherent characteristics of Ltype pile were simulated. The results were compared with that calculated by TMM (Transfer Matrix Method), which proved that the FE model was rationality. The numerical model of underwater more curved pipe was established, the fluidstructure coupling modal analysis was conducted, and the effects of wall thickness and diameter on the natural frequency were studied. The dynamic response of pipe under the unsteady flow was analyzed, the influence of wall thickness and wave speed on the pipe vibration were researched. The results showed that the natural frequency of pipe system drops when considering the three couplings among outer and inter fluid with pipe, compared with the two coupling between inter fluid with pipe and no coupling. The natural frequency of the pipe increases with the increasing of wall thickness and diameter. For the pipe natural frequency, the coupling effect between gas and pipe is smaller than that between fluid and pipe. Under the unsteady flow, the pipe vibration amplitude deceases with the increasing of wall thickness, and increases with the increasing of wave velocity.

参考文献/References:

[1]JAEGER C. The theory of resonance in hydropower systems, discussion of incidents and accidents ocuring in pressure systems[J]. ASME Journal of Basic Engineering, 1963,(85):631-640
[2]ASHLEY H, Havilland G. Bending vibrations of a pipeline containing flowing fluid[J]. Journal of Applied Mechanics, 1950,(17):229-232
[3]ZHANG L, Tijsseling A S. FSI analysis of liquidfilled pipes[J]. Journal of Sound and Vibration, 1999, 224(1): 69-99
[4]初飞雪.两端简支输液管道流固耦合振动分析[J].中国机械工程,2006,17(3):248-251 CHU Fei-xue. Liquidsolid coupling Vibration analysis of the hinged pipes for fluid transportation[J]. China Mechanical Engineering,2006,17(3):248-251
[5]陆春月,寇子明,吴娟,等.液压波动激励下的充液管道动力学特性[J].华中科技大学学报(自然科学版),2013,41(5):17-22 LU Chun-yue, KOU Zi-ming, WU Juan, et al. Dynamic characteristics of pipes conveying fluid excited by hydraulic fluctuation[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2013,41(5):17-22
[6]张智勇,沈荣灜,王强.充液管道系统的模态分析[J].固体力学学报,2001,22(2):143-149 ZHANG Zhi-yong, SHEN Rong-ying, WANG Qiang. The modal analysis of the liquidfilled pipe system[J]. Chinese Journal of Solid Mechanics, 2001,22(2):143-149
[7]柳贡民,陈浩,李帅军.蒸汽参数对管路系统动力特性的影响规律[J].固体力学学报,2012,33(2):168-175 LIU Gong-min, CHEN Hao, LI Shuai-jun. Research on the influence of steam parameters on dynamic characteristics of pipeline system[J]. Chinese Journal of Solid Mechanics, 2012,33(2):168-175
[8]姚煜中.充液管道动力学建模与振动特性分析[D].上海:上海交通大学,2011
[9]周知进,卢浩,王钊,等.垂直提升管道输送过程中的流固耦合效应分析[J].中国海洋大学学报,2013,43(1):87-92 ZHOU Zhi-jin, LU Hao, WANG Zhao, et al. Characteristics analysis on considering fluidsolid coupling effects for vertical lifting pipe[J]. Periodical of Ocean University of China, 2013,43(1):87-92
[10]付永领,荆慧强.弯管转角对液压管道振动特性影响分析[J].振动与冲击,2013,32(13):165-169 FU Yong-ling, JING Hui-qiang. Elbow angle dffect on hydraulic pipeline vibration characteristics[J]. Journal of Vibration and Shock, 2013,32(13):165-169
[11]许伟伟,武博,吴大转,等.非稳定流体与U形管路耦合振动特性研究[J].高校化学工程学报,2012,26(5):770-774 XU Wei-wei, WU Bo, WU Da-zhuan,et al. Vibration investigation of U pipe interacted with unsteady fluid[J]. Journal of Chemical Engineering of Chinese Universities, 2012,26(5):770-774

相似文献/References:

[1]赵小平,任 颖,白本祥,等.尾矿库初期坝稳定性的合成孔径雷达干涉变形检测与流固耦合数值模拟分析[J].中国安全生产科学技术,2014,10(5):17.[doi:10.11731/j.issn.1673-193x.2014.05.003]
 ZHAO Xiaoping,REN Ying,BAI Benxiang,et al.INSAR deformation detection and fluid-solid coupling numerical simulation analysis on the stability of initial dam in tailings reservoir[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):17.[doi:10.11731/j.issn.1673-193x.2014.05.003]
[2]梅国栋,王云海.三维流固耦合数值模拟在铜锣山隧道安全性评价中的应用*[J].中国安全生产科学技术,2009,5(6):57.
 MEI Guo dong,WANG Yun hai.The application of 3D fluidsolid coupling numerical simulation in the safety accessment of TongLuo Shan tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(8):57.
[3]付冉,姚安林,刘霖聪,等.穿越水域输气管道裸露悬空段的应力敏感性分析[J].中国安全生产科学技术,2015,11(11):106.[doi:10.11731/j.issn.1673-193x.2015.11.018]
 FU Ran,YAO An-lin,LIU Lin-cong,et al.Analysis on stress sensitivity for exposed and suspended section of water crossing gas pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(8):106.[doi:10.11731/j.issn.1673-193x.2015.11.018]
[4]许根富,王飞,赵哲明,等.石化压力管道冲蚀失效数值模拟及影响因素分析[J].中国安全生产科学技术,2016,12(4):143.[doi:10.11731/j.issn.1673-193x.2016.04.026]
 XU Genfu,WANG Fei,ZHAO Zheming,et al.Numerical simulation and influence factor analysis on erosion-corrosionfailure of petrochemical pressure pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(8):143.[doi:10.11731/j.issn.1673-193x.2016.04.026]
[5]翟晓荣,张红梅,窦仲四,等.基于不同岩层组合对底板阻水效应的流固耦合机理研究[J].中国安全生产科学技术,2016,12(7):16.[doi:10.11731/j.issn.1673-193x.2016.07.003]
 ZHAI Xiaorong,ZHANG Hongmei,DOU Zhongsi,et al.Study on fluid-solid coupling mechanism for water resistance effect of coal floor based on different combination of rock strata[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(8):16.[doi:10.11731/j.issn.1673-193x.2016.07.003]
[6]黎伟,宋伟,李乃禾,等.滑套式井下安全阀设计及动态特性分析[J].中国安全生产科学技术,2017,13(2):159.[doi:10.11731/j.issn.1673-193x.2017.02.028]
 LI Wei,SONG Wei,LI Naihe,et al.Design and dynamic characteristic analysis of sliding-sleeve subsurface safety valve[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(8):159.[doi:10.11731/j.issn.1673-193x.2017.02.028]
[7]施永威,王宗林,梁冰,等.本煤层顺层预抽瓦斯钻孔间距数值模拟研究[J].中国安全生产科学技术,2017,13(5):21.[doi:10.11731/j.issn.1673-193x.2017.05.004]
 SHI Yongwei,WANG Zonglin,LIANG Bing,et al.Study on numerical simulation of borehole spacing for gas pre-drainage along coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(8):21.[doi:10.11731/j.issn.1673-193x.2017.05.004]
[8]骆正山,钟强.多相流耦合水击模型在泄压阀压力精度设定中的应用[J].中国安全生产科学技术,2018,14(7):148.[doi:10.11731/j.issn.1673-193x.2018.07.022]
 LUO Zhengshan,ZHONG Qiang.Application of Multiphase Flow Coupled Water Hammer Model in Pressure Accuracy Setting of Pressure Relief Valve[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):148.[doi:10.11731/j.issn.1673-193x.2018.07.022]
[9]周西华,张潇文,白刚,等.考虑水渗流作用的顺层抽采模拟及参数优化研究[J].中国安全生产科学技术,2018,14(10):112.[doi:10.11731/j.issn.1673-193x.2018.10.018]
 ZHOU Xihua,ZHANG Xiaowen,BAI Gang,et al.Study on simulation of alongseam gas extraction considering water seepage effect and parameter optimization[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(8):112.[doi:10.11731/j.issn.1673-193x.2018.10.018]
[10]杨腾龙,王兆丰,陈金生,等.淹没条件对连续射流破碎含瓦斯煤效率影响研究[J].中国安全生产科学技术,2019,15(1):100.[doi:10.11731/j.issn.1673-193x.2019.01.016]
 YANG Tenglong,WANG Zhaofeng,CHEN Jinsheng,et al.Study on influence of submerged conditions on efficiency of breaking coal containing gas by continuous jet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(8):100.[doi:10.11731/j.issn.1673-193x.2019.01.016]

备注/Memo

备注/Memo:
国家自然科学基金项目(51004083)
更新日期/Last Update: 2014-09-26