|本期目录/Table of Contents|

[1]刘勇,戴彪,魏建平,等.水射流卸压增透钻孔布置优化分[J].中国安全生产科学技术,2016,12(3):21-25.[doi:10.11731/j.issn.1673-193x.2016.03.004]
 LIU Yong,DAI Biao,WEI Jianping,et al.Analysis on layout optimization of borehole for pressure relief and permeability improvement by water jet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):21-25.[doi:10.11731/j.issn.1673-193x.2016.03.004]
点击复制

水射流卸压增透钻孔布置优化分
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年3期
页码:
21-25
栏目:
学术论著
出版日期:
2016-03-30

文章信息/Info

Title:
Analysis on layout optimization of borehole for pressure relief and permeability improvement by water jet
文章编号:
1673-193X(2016)-03-0021-05
作者:
刘勇1戴彪1魏建平12温志辉1
(1.河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室,河南 焦作 454000; 2.煤炭安全生产河南省协同创新中心,河南 焦作 454000)
Author(s):
LIU Yong1 DAI Biao1 WEI Jianping12 WEN Zhihui1
(1. Henan Key Laboratory for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo Henan 454000, China; 2. Collaborative Innovation Center of Coal Safety Production of Henan Province, Jiaozuo Henan 454000, China)
关键词:
水射流淹没射流钻孔布置瓦斯抽采瓦斯压力
Keywords:
water jet submerged jet borehole layout gas extraction gas pressure
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.03.004
文献标志码:
A
摘要:
水射流割缝卸压增透时存在淹没射流和非淹没射流两种情况,导致煤体上下割缝半径不同,若仅根据一种半径进行钻孔布置,则易出现抽采空白带或增大工程量等问题。为此,提出基于淹没射流和非淹没射流不同破碎半径的钻孔布置新工艺。在分析两种射流速度场分布的基础上,理论计算了两种射流破碎半径,对比分析得出非淹没射流与淹没射流的破碎半径之比是1.48∶1。运用comsol数值模拟软件,建立数值模型,分析了两种射流并存情况下的瓦斯压力变化,并与不考虑淹没射流时抽放数据进行对比分析,结果表明,两种射流并存时抽采范围为不考虑淹没射流的86.5%。根据分析结果,提出应采用交叉割缝的方式,同一行中相邻两割缝终孔间距为7.5 m,相邻两行中,垂直间距相隔5.8 m,且两端割缝中心相错3.75 m的布孔方案,并用comsol进行验证,结果表明,交叉割缝布孔具有较好的抽放效果。
Abstract:
There exists two kinds of situations, submerged jet and non-submerged jet, when adopting water jet for cutting seam, pressure relief and permeability improvement, which lead to the different cutting radius up and down the coal. If the borehole layout is carried out only according to one diameter, the problems of extraction blanking zone or engineering quantity increase are easy to appear. Therefore, a new technology of borehole layout based on different broken radius of submerged jet and non-submerged jet was put forward. Through analyzing the distribution of velocity field the broken radius for two kinds of jet were calculated theoretically, and with comparison analysis, the ratio of broken radius for non-submerged jet and submerged jet was 1.48:1. A numerical model was established using the COMSOL numerical simulation software, the pressure change of gas when two kinds of jet coexisted was analyzed and compared with the extraction data without considering the submerged jet. The results showed that the extraction range when two kinds of jet coexisted was 86.5% of that without considering the submerged jet. So the borehole layout scheme was suggested that the way of cross cutting should be adopted, and in the same line, the space between two adjacent cutting end holes is 7.5m, while in two adjacent lines, the vertical space is 5.8m, besides, the space between the cutting center in the ends is 3.75m. It was verified by COMSOL, and the results showed that cross cutting borehole layout has a better extraction effect.

参考文献/References:

[1]黄小波, 卢义玉, 夏彬伟,等.淹没射流旋转割缝技术在突出煤层掘进中的应用[J].煤炭科学技术, 2012, 40(3): 70-73. HUANG Xiaobo, LU Yiyu, XIA Binwei, et al. Application of flooded water jet rotary slotting technology to gateway driving in outburst seam[J]. Coal Science and Technology, 2012, 40(3): 70-73.
[2]刘勇, 卢义玉, 魏建平,等.降低井下煤层压裂起裂压力方法研究[J]. 中国安全科学学报, 2013, 23(9): 96-100. LIU Yong, LU Yiyu, WEI Jianping, et al. A novel approach and mechanism for decreasing fracture initiation pressure and its application in coal mine[J]. China Safety Science Journal, 2013, 23(9): 96-100.
[3]LIU Y, WEI J P, LIU X T. Experimental study on new method of drilling deep hole in soft coal seam[J]. Disaster Advances, 2013, 6(S2): 295-301.
[4]余陶, 卢平, 朱贵旺,等. 穿层钻孔水力压裂强化抽采瓦斯消突技术应用研究[J]. 安全与环境学报, 2010, 10(6): 172-175. YU Tao, LU Ping, ZHU Guiwang, et al. Study on enhanced gas drainage by hydraulic fracture in cross-measure borehole[J]. Journal of Safety and Environments, 2010, 10(6): 171-175.
[5]张保法, 刘中一. “三软”高突煤层水力冲孔工艺优化[J]. 煤矿安全, 2013, 44(7): 141-143. ZHANG Baofa, LIU Zhongyi. Hydraulic punching technology optimization in “Three Soft” severe outburst coal seam[J]. Safety in Coal Mines, 2013, 44(7): 141-143.
[6]韩颖, 宋德尚. 低渗煤层高压水射流割缝增透技术试验研究[J]. 中国安全生产科学技术, 2014(12): 35-39. HAN Ying, SONG Deshang. Experimental study on permeability improvement technology by cutting seam using high pressure water jet in coal seam with low permeability[J]. Journal of Safety Science and Technology, 2014(12): 35-39.
[7]张建国, 林柏泉, 翟成. 穿层钻孔高压旋转水射流割缝增透防突技术研究与应用[J]. 采矿与安全工程学报, 2012, 29(3): 411-415. ZHANG Jianguo, LIN Baiquan, ZHAI Cheng. Research on outburst prevention technology of high pressure hydraulic-cutting seam through layer and its application[J]. Journal of Mining & Safety Engineering, 2012, 29(3): 411-415.
[8]葛兆龙, 梅绪东, 贾亚杰,等.高压水射流割缝钻孔抽采影响半径研究[J]. 采矿与安全工程学报, 2014, 31(4): 657-663. GE Zhaolong, MEI Xudong, JIA Yajie, et al. Influence radius of slotted borehole drainage by high pressure water jet[J]. Journal of Mining & Safety Engineering, 2014, 31(4): 657-663.
[9]时亚军,武沛武,王佳,等. 高压水射流卸压增透石门揭煤技术研究[J]. 中国煤炭,2012, 38(11): 90-93. SHI Yajun, WU Peiwu, WANG Jia, et al. Research on rock cross-cut coal uncovering via high-presure water jet to release pressure and improve permeability[J]. China Coal, 2012, 38(11): 90-93.
[10]卢义玉, 刘勇, 夏彬伟, 等. 石门揭煤钻孔布置优化分析及应用[J].煤炭学报, 2011, 36(2): 283-287. LU Yiyu, LIU Yong, XIA Binwei, et al. The novel technology of drilling arrangement of rock cross-cut coal uncovering basing on theoretical analysis[J]. Journal of China Coal Society, 2011, 36(2): 283-287.
[11]Bradshaw P,Love E M. The normal impingement of a circular jet on a flat plate [A]. Great Britain Aeronautical Research Council, ARC Report Council[C]. London, 1959.
[12]刘勇, 刘建磊, 温志辉,等.多级破煤水力冲孔强化松软低透煤层瓦斯抽采技术研究[J]. 中国安全生产科学技术, 2015,11(4): 27-32. LIU Yong, LIU Jianlei, WEN Zhihui, et al. Study on technology of hydraulic punching by multi-stage coal breaking for enhancing gas drainage in soft coal seams with low permeability[J]. Journal of Safety Science and Technology, 2015, 11(4): 27-32.
[13]常宗旭, 郤保平, 赵阳升, 等.煤岩体水射流破碎机理[J].煤炭学报,2008,33(9): 983-987. CHANG Zongxu, XI Baopin, HAO Yangsheng, et al. Mechanical of breaking coal by water jet[J]. Journal of China Coal Society, 2008, 33(9): 983-987.

相似文献/References:

[1]刘勇,梁博臣,何岸,等.自进式旋转钻头钻孔修复理论及关键参数研究[J].中国安全生产科学技术,2016,12(2):39.[doi:10.11731/j.issn.1673-193X.2016.02.007]
 LIU Yong,LIANG Bochen,HE An,et al.Research on theory and technical parameter of borehole restoration for self-propelling and rotating drill[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(3):39.[doi:10.11731/j.issn.1673-193X.2016.02.007]
[2]刘勇,张涛,魏建平,等.磨料形状对磨料气体射流冲蚀性能的影响研究[J].中国安全生产科学技术,2017,13(11):117.[doi:10.11731/j.issn.1673-193x.2017.11.019]
 LIU Yong,ZHANG Tao,WEI Jianping,et al.Research on influence of abrasive shape on erosion performance of abrasive gas jet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(3):117.[doi:10.11731/j.issn.1673-193x.2017.11.019]

备注/Memo

备注/Memo:
河南理工大学高校基本科研业务费专项项目(自然科学类)(NSFRF140102);国家自然科学基金项目(51574112,51404100);教育部科学技术项目(213022A)
更新日期/Last Update: 2016-04-15