|本期目录/Table of Contents|

[1]徐星,郭兵兵,王公忠.人工神经网络在矿井多水源识别中的应用[J].中国安全生产科学技术,2016,12(1):181-185.[doi:10.11731/j.issn.1673-193x.2016.01.034]
 XU Xing,GUO Bingbing,WANG Gongzhong.Application of artificial neural network for recognition of multiple water sources in mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(1):181-185.[doi:10.11731/j.issn.1673-193x.2016.01.034]
点击复制

人工神经网络在矿井多水源识别中的应用
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年1期
页码:
181-185
栏目:
现代职业安全卫生管理与技术
出版日期:
2016-01-30

文章信息/Info

Title:
Application of artificial neural network for recognition of multiple water sources in mine
文章编号:
1673-193X(2016)-01-0181-05
作者:
徐星1郭兵兵1王公忠12
1. 河南工程学院 安全工程学院,河南 郑州 451191;2. 武汉理工大学 资源与环境工程学院,湖北 武汉 430070)
Author(s):
XU Xing1 GUO Bingbing1 WANG Gongzhong12
(1. School of Safety Engineering, Henan Institute of Engineering, Zhengzhou Henan 451191, China; 2. School of Resource and Environment Engineering, Wuhan University of Technology, Wuhan Hubei 430070, China)
关键词:
矿井多水源BP神经网络Elman神经网络识别泛化能力
Keywords:
multiple water sources in mine BP neural network Elman neural network recognition generalization ability
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.01.034
文献标志码:
A
摘要:
以焦作矿区水化数据为例,选用Na++K+、Ca2+、Mg2+、Cl-、SO2-4、HCO-36种水化离子浓度作为识别矿井水源的依据,运用Matlab软件分别建立BP神经网络与Elman神经网络的矿井多水源识别模型。应用结果表明:与静态的BP神经网络相比,在结构上增加承接层的Elman神经网络在训练和仿真中拟合能力更强,识别精度更高和泛化能力更好;矿井地下水随着地下开采与扰动具有动态性,将具有非线性动态特征的Elman神经网络应用于矿井多水源的识别,对准确判断突水来源和分析地下水运移规律具有一定的辅助和指导意义。
Abstract:
Taking the hydration data of Jiaozuo mining area as example, and using the concentrations of six hydrated ion including Na++K+, Ca2+, Mg2+, Cl-, SO2-4 and HCO-3 as the basis for recognition of water sources in mine, the recognition models of multiple water sources in mine were established based on BP neural network and Elman neural network respectively by using Matlab software. The application results showed that compared with the static BP neural network, the fitting ability of Elman neural network which added an undertaking layer in structure in training and simulation was stronger, the recognition accuracy was higher and the generalization ability was better. The mine groundwater has dynamic nature with underground mining and disturbance. It has certain auxiliary and guidance to accurately determine water inrush sources and analyze the migration laws of groundwater by applying the Elman neural network with the nonlinear dynamic characteristics in recognition of multiple water sources in mine.

参考文献/References:

[1]方树林. 中国煤矿灾害防治技术的研究现状与发展趋势[J]. 洁净煤技术, 2012, 18(1):90-94. FANG Shulin. Research status and development tendency of coal mine disaster prevention and control technology in China [J]. Clean Coal Technology, 2012, 18(1): 90-94.
[2]吴基文, 徐胜平, 翟晓荣, 等. 淮北桃园煤矿北八采区煤系砂岩水水化学特征及其水源判别[J]. 中国安全生产科学技术, 2015, 11(1):84-90 WU Jiwen, XU Shengping, ZHAI Xiaorong, et al. Hydrochemical characteristics and water sources discrimination of coal-bearing sandstone water in the north eighth mining area of Taoyuan coal mine in Huaibei [J]. Journal of Safety Science and Technology, 2015,11(1):84-90.
[3]杨海军, 王广才. 煤矿突水水源判别与水量预测方法综述[J]. 煤田地质与勘探, 2012, 40(3):48-54. YANG Haijun, WANG Guangcai. Summarization of methods of distinguishing sources and forecasting inflow of water inrush in coal mines[J]. Coal Geology& Exploration, 2012,40( 3) : 48-54.
[4]鲁金涛, 李夕兵, 宫凤强, 等. 基于主成分分析与 Fisher 判别分析法的矿井突水水源识别方法[J]. 中国安全科学学报, 2012, 22(7):109-115. LU Jintao, LI Xibing, GONG Fengqiang, et al. Recognizing of mine water inrush sources based on principal components analysis and fisher discrimination analysis method[J]. China Safety Science Journal, 2012, 22(7):109-115.
[5]郭国强. 吕梁矿区薄层灰岩突水判别研究[J].中国安全生产科学技术, 2013,9(6):16-20. GUO Guoqiang. Study on water inrush of limestone aquifer in Lvliang coal mine [J]. Journal of Safety Science and Technology, 2013,9(6):16-20.
[6]杨永国, 黄福臣. 非线性方法在矿井突水水源判别中的应用研究[J]. 中国矿业大学学报, 2007, 36(3):283-286. YANG Yongguo, HUANG Fuchen. Water source determination of mine inflow based on nonlinear method[J]. Journal of China University of Mining and Technology, 2007,36(3): 283-286.
[7]徐忠杰, 杨永国, 汤琳. 神经网络在矿井水源判别中的应用[J]. 煤矿安全, 2007, 38(2):4-6. XU Zhongjie, YANG Yongguo, TANG Lin. Application of BP neural network in evaluation of water source in mine[J]. Safety in Coal Mines, 2007,38(2):4-6.
[8]祝翠, 钱家忠, 周小平, 等. BP神经网络在潘三煤矿突水水源判别中的应用[J]. 安徽建筑工业学院学报(自然科学版), 2010, 18(5):35-38. ZHU Cui, QIAN Jiazhong, ZHOU Xiaoping,et al. Water-rnrush source discrimination with BP neural network in Pansan Mine[J]. Journal of Anhui Institute of Architecture & Industry (Nature Science Edition), 2010,18(5):35-38.
[9]钱家忠, 吕纯, 赵卫东, 等. Elman与BP神经网络在矿井水源判别中的应用[J]. 系统工程理论与实践, 2010,30(1):145-150. QIAN Jiazhong, LV Chun, ZHAO Weidong,et al. Application of Elman and BP neural networks in discriminating water bursting source of coalmine[J]. Systems Engineering-Theory & Practice, 2010,30(1):145-150.
[10]Kanti K M, Rao PS. Prediction of bead geometry in pulsed GMA welding using back propagation neural network[J]. Journal of Materials Processing Technology, 2008,200: 300-305.
[11]张许良, 张子戍, 彭苏萍. 数量化理论在矿井突(涌)水水源判别中的应用[J]. 中国矿业大学学报,2003, 32(3):251-254. ZHANG Xuliang, ZHANG Zixu, PENG Suping. Application of the second theory of quantification in identifying gushing water sources of coal mines[J]. Journal of China University of Mining & Technology,2003,32(3): 251-254.

相似文献/References:

[1]汪送,王瑛,李超.BP神经网络在航空机务人员本质安全程度评价中的应用[J].中国安全生产科学技术,2010,6(6):35.
[2]王悦,薛伟.基于BP神经网络的东北贮木场火灾危险等级评定[J].中国安全生产科学技术,2013,9(2):173.
 WANG Yue,XUE Wei.Evaluation of fire danger rating of northeast lumberyard based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):173.
[3]孙赟,李明涛,姚晓晖.基于BP神经网络人群流量预测的实现[J].中国安全生产科学技术,2010,6(2):61.
 SUN Yun,LI Ming-tao,YAO Xiao-hui.Imphement of crowd flow prediction based on BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(1):61.
[4]高宗军,付青,郑秋霞,等.BP和Elman神经网络在砂土液化预测中的研究[J].中国安全生产科学技术,2013,9(6):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
 GAO Zong jun,FU Qing,ZHENG Qiu xia,et al.Study on forecasting of sand liquefaction by using BP neural and Elamn neural networks[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(1):58.[doi:10.11731/j.issn.1673-193x.2013.06.011]
[5]易高翔,潘长城,郭建中,等.基于多源数据融合的石油罐区安全监控模型[J].中国安全生产科学技术,2014,10(3):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
 YI Gao xiang,PAN Chang cheng,GUO Jian zhong,et al.Study on safety monitoring model of petroleum tank farm based on multisource data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):90.[doi:10.11731/j.issn.1673-193x.2014.03.015]
[6]陈建宏,郑荣凯,陈 浩.基于PCA和BP神经网络边坡稳定性分析[J].中国安全生产科学技术,2014,10(5):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
 CHEN Jianhong,ZHENG Rongkai,CHEN Hao.Analysis on slope stability based on combination of PCA and BP neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):142.[doi:10.11731/j.issn.1673-193x.2014.05.023]
[7]宋新明,居 勇,曾 鸣,等.基于神经网络的供电企业安全文化评价研究*[J].中国安全生产科学技术,2009,5(4):55.
 SONG Xin ming,JU Yong,ZENG Ming,et al.Research on the evaluation of power supply enterprises safety culture based on neural network[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(1):55.
[8]刘业娇,田志超,刘进才.BP神经网络在矿井本质安全程度评价中的应用[J].中国安全生产科学技术,2009,5(5):102.
 LIU Ye jiao,TIAN Zhi chao,LIU Jin cai.Application of BP neural network in the field of evaluation on intrinsical safety degree in mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(1):102.
[9]潘长城,王时彬,王如君,等.基于信息融合与GM的石油罐区安全监控预测模型[J].中国安全生产科学技术,2014,10(7):21.[doi:10.11731/j.issn.1673-193x.2014.07.004]
 PAN Chang-cheng,WANG Shi-bin,WANG Ru-jun,et al.Petroleum tank farm safety monitoring forecasting model based on information fusion and GM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):21.[doi:10.11731/j.issn.1673-193x.2014.07.004]
[10]陈建宏,陈浩,郑荣凯,等.基于物元分析与PCA的部队汽车分队安全评价模型[J].中国安全生产科学技术,2014,10(7):180.[doi:10.11731/j.issn.1673-193x.2014.07.032]
 CHEN Jian-hong,CHEN Hao,ZHENG Rong-kai,et al.Safety assessment model for military vehicle units based on combination of matter element analysis and PCA[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(1):180.[doi:10.11731/j.issn.1673-193x.2014.07.032]

备注/Memo

备注/Memo:
国家“十二五”科技支撑计划重点项目(2011BAB05B03);建设经费项目(200925);2016年度河南省高等学校重点科研项目(16A44001)
更新日期/Last Update: 2016-03-01