|本期目录/Table of Contents|

[1]叶涛涛,冯薇儿,李轩,等.密闭空间氢-氧催化复合反应温度效应及消氢效果研究*[J].中国安全生产科学技术,2024,20(12):35-42.[doi:10.11731/j.issn.1673-193x.2024.12.005]
 YE Taotao,FENG Weier,LI Xuan,et al.Temperature effect and hydrogen elimination performance of hydrogen-oxygen catalytic recombination reaction in confined space[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(12):35-42.[doi:10.11731/j.issn.1673-193x.2024.12.005]
点击复制

密闭空间氢-氧催化复合反应温度效应及消氢效果研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年12期
页码:
35-42
栏目:
学术论著
出版日期:
2024-12-30

文章信息/Info

Title:
Temperature effect and hydrogen elimination performance of hydrogen-oxygen catalytic recombination reaction in confined space
文章编号:
1673-193X(2024)-12-0035-08
作者:
叶涛涛冯薇儿李轩李斌张丹张晶王永旭解立峰
(南京理工大学 安全科学与工程学院,江苏 南京 210094)
Author(s):
YE Taotao FENG Weier LI Xuan LI Bin ZHANG Dan ZHANG Jing WANG Yongxu XIE Lifeng
(School of Safety Science and Engineering,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)
关键词:
氢安全氢气消除温度特性消氢效率氢-氧催化复合
Keywords:
hydrogen safetyhydrogen elimination temperature characteristic hydrogen eliminating efficiency hydrogen-oxygen catalytic recombination
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2024.12.005
文献标志码:
A
摘要:
为探究常温下初始氢气体积分数、氧气流速和催化剂质量对氢-氧催化复合反应温度以及消氢效果的影响,利用铂/碳(Pt/C)催化剂,在自行设计的圆柱形容器中开展氢-氧复合催化消氢实验,基于热电偶和氢气浓度传感器采集的温度及氢气体积分数探究发展规律。研究结果表明:温度峰分布模式受反应参数的影响较大;当氢气体积分数小于当量比时,氢气转化率在本文研究条件下均达到100%;反应温度的变化主要由氢气体积分数主导,当氢气体积分数小于当量比时,温度峰值随氢气体积分数增加而增加;氧气流速对温度传递方向影响有限,但其过高会增加系统的散热能力,从而影响催化剂的热积聚。研究结果可为密闭环境中的氢气消除设计提供参考依据。
Abstract:
In order to investigate the influence of initial hydrogen volume fraction,oxygen flow rate and catalyst quality on the temperature of the hydrogen-oxygen catalytic recombination reaction and the effect of hydrogen elimination at room temperature,the hydrogen-oxygen composite catalytic hydrogen elimination experiments were carried out in a self-designed cylindrical vessel using platinum/carbon (Pt/C) catalysts,and the development pattern was investigated on the basis of the temperatures and hydrogen volume fraction collected by the thermocouples and hydrogen concentration sensors.The results show that the distribution pattern of temperaturepeak is greatly affected by the reaction parameters.When the hydrogen volume fraction is less than the equivalent ratio,the hydrogen conversion rate reaches 100% under the conditions in this study.The change of reaction temperature is mainly dominated by the hydrogen volume fraction,and when the hydrogen volume fraction is less than the equivalent ratio,the temperature peak increases with the increase of hydrogen volume fraction.The oxygen flow rate has a limited effect on the direction of temperature transfer,but its excessively high level increases the heat dissipation capacity of the system,thus affecting the heat accumulation of catalyst.The research results can provide reference basis for the design of hydrogen elimination in confined environments.

参考文献/References:

[1]何钰江,刘会灯,王皓宇,等.“双碳”目标下氢能发展体系构建和产业创新布局展望[J].电工电能新技术,2023,42(9):65-76. HE Yujiang,LIU Huideng,WANG Haoyu,et al.Prospect of constructionof hydrogen energy development systemandindustrial innovation layout under “Dual Carbon”goal[J].Advanced Technology of Electrical Engineering and Energy,2023,42(9):65-76.
[2]张庆生,黄雪松.国内外氢能产业政策与技术经济性分析[J].低碳化学与化工,2023,48(2):133-139. ZHANG Qingsheng,HUANG Xuesong.Analysis of domestic and foreign hydrogen energy industrial policies and technical economy[J].Low-Carbon Chemistry and Chemical Engineering,2023,48(2):133-139.
[3]张晓林,王润晴,陈兵.自然通风下的高压氢气泄露扩散特性[J].制冷与空调(四川),2023,37(5):664-674. ZHANG Xiaolin,WANG Runqing,CHEN Bing.High-pressure hydrogen leakage and diffusion characteristics under natural ventilation[J].Refrigeration & Air Conditioning,2023,37(5):664-674.
[4]MAN T,HU Z,LI J,et al.Numerical evaluation of passive autocatalytic recombiner performance under post-accident conditions[J].International Journal of Hydrogen Energy,2024,51:1079-1095.
[5]BENTAIB A,MEYNET N,BLEYER A.Overview on hydrogen risk research and development activities:methodology and open issues[J].Nuclear Engineering and Technology,2015,47(1):26-32.
[6]LOPEZ-ALONSO E,PAPINI D,JIMENEZ G.Hydrogen distribution and passive autocatalytic recombiner (PAR) mitigation in a PWR-KWU containment type[J].Annals of Nuclear Energy,2017,109:600-611.
[7]CHEN L,MEDLIN J W,GRNBECK H.On the reaction mechanism of direct H2O2 formation over Pd catalysts[J].ACS Catalysis,2021,11(5):2735-2745.
[8]KIM T,BALLA P,SHIN D,et al.A comparison of γ-Al2O3-supported deoxo catalysts for the selective removal of oxygen from high-concentration hydrogen streams[J].International Journal of Hydrogen Energy,2024,51:396-409.
[9]GARDNER L,LIANG Z,CLOUTHIER T,et al.A large-scale study on the effect of ambient conditions on hydrogen recombiner-induced ignition[J].International Journal of Hydrogen Energy,2021,46(23):12594-12604.
[10]RAMAN R K,IYER K N,RAVVA S R.CFD studies of hydrogen mitigation by recombiner using correlations of reaction rates obtained from detailed mechanism[J].Nuclear Engineering and Design,2020,360:110528.
[11]MALAKHOV A A,AVDEENKOV A V,DU TOIT M H,et al.Numerical and experimental analysis of cylindrical-type PAR catalyst behaviour[J].Nuclear Engineering and Design,2024,417:112822.
[12]MALAKHOV A A,AVDEENKOV A V,DU TOIT M H,et al.Numerical study of thermal diffusion in a passive autocatalytic recombiner:Possible effects on catalyst temperature and hydrogen distribution[J].International Journal of Hydrogen Energy,2023,48(32):12129-12138.
[13]MAN T,FENG Y,HU Z,et al.Numerical investigation on the hydrogen removal capability of various catalytic elements in PARs[J].International Journal of Hydrogen Energy,2024,73:812-825.
[14]HALOUANE Y,DEHBI A.CFD prediction of hydrogen passive autocatalytic recombiner performance under counter-current flow conditions[J].International Journal of Hydrogen Energy,2020,45(16):10247-10256.
[15]DU PREEZ S P,JONES D R,BESSARABOV D G,et al.Development of a Pt/stainless steel mesh catalyst and its application in catalytic hydrogen combustion[J].International Journal of Hydrogen Energy,2019,44(49):27094-27106.
[16]LI X,ZHANG J,ZHOU S Y,et al.Experimental investigation on the temperature characteristics and hydrogen elimination effect of non-premixed hydrogen-oxygen recombination reaction at ambient temperature[J].Fuel,2023,331:125622.
[17]ZHANG J,LI X,GUO Z,et al.Kinetics of non-premixed hydrogen-oxygen catalytic recombination reaction at ambient temperature[J].International Journal of Hydrogen Energy,2023,48(43):16517-16529.
[18]LIU H,HAO L T,JIA H K,et al.Study on hydrogen diffusion and combustion characteristics of hydrogen fuel cell sightseeing vehicles in open space[J].International Journal of Hydrogen Energy,2024,87:50-67.
[19]UNDAVALLI V,BERWAL P,KHANDELWAL B.Chemical kinetics of hydrogen combustion[M].Singapore:Springer Nature Singapore,2024.
[20]LI X,ZHOU S Y,ZHANG J,et al.Kinetics study on the catalytic recombination of non-premixed hydrogen-oxygen system:Effects of initial temperature,oxygen flow rate,and hydrogen diffusion time[J].Fuel,2023,350:128775.
[21]ARNAUT L.Chemical kinetics(second edition) [M].Amsterdam:Elsevier,2021.
[22]PETERS B.Reaction rate theory and rare events[M].Amsterdam:Elsevier,2017.
[23]LI Y H,PENG K H,KAO H H.Interaction between flow structure and chemical reaction around the perforated gap of stainless steel-platinum catalytic partition reactor [J].International Journal of Heat and Mass Transfer,2021,176:121418.
[24]ZHANG Y,PAN J,LU Z,et al.The characteristics of pure heterogeneous reaction for H2/Air mixture in the micro-combustors with different thermophysical properties [J].Applied Thermal Engineering,2018,141:741-750.
[25]DEUTSCHMANN O,SCHMIDT R,BEHRENDT F,et al.Numerical modeling of catalytic ignition [J].Symposium (International) on Combustion,1996,26(1):1747-1754.
[26]GIANNISSI S G,HOYES J R,CHERNYAVSKIY B,et al.CFD benchmark on hydrogen release and dispersion in a ventilated enclosure:Passive ventilation and the role of an external wind[J].International Journal of Hydrogen Energy,2015,40(19):6465-6477.
[27]ALIANTO B,NASRUDDIN N,NUGROHO Y S.High-rise building fire safety using mechanical ventilation and stairwell pressurization:A review[J].Journal of Building Engineering,2022,50:104224.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2024-07-02
* 基金项目: 中国博士后科学基金项目(2023M741715)
作者简介: 叶涛涛,硕士研究生,主要研究方向为氢-氧催化复合反应消氢效果研究。
通信作者: 张晶,博士,主要研究方向为爆炸力学与安全。
更新日期/Last Update: 2024-12-28