|本期目录/Table of Contents|

[1]胡杰,冯康武,孙臣,等.近距离薄煤层群上保护层开采邻近层卸压瓦斯抽采模式探究*[J].中国安全生产科学技术,2021,17(11):65-71.[doi:10.11731/j.issn.1673-193x.2021.11.010]
 HU Jie,FENG Kangwu,SUN Chen,et al.Research on pressure-relief gas drainage mode of adjacent coal seams in upper protective layer mining of close thin coal seam group[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(11):65-71.[doi:10.11731/j.issn.1673-193x.2021.11.010]
点击复制

近距离薄煤层群上保护层开采邻近层卸压瓦斯抽采模式探究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年11期
页码:
65-71
栏目:
职业安全卫生管理与技术
出版日期:
2021-11-30

文章信息/Info

Title:
Research on pressure-relief gas drainage mode of adjacent coal seams in upper protective layer mining of close thin coal seam group
文章编号:
1673-193X(2021)-11-0065-07
作者:
胡杰冯康武孙臣陈渝
(1.瓦斯灾害监控与应急技术国家重点实验室,重庆 400037;
2.中煤科工集团重庆研究院有限公司,重庆 400037;
3.四川达竹煤电(集团)有限责任公司,四川 达州 635000)
Author(s):
HU Jie FENG Kangwu SUN Chen CHEN Yu
(1.State Key Laboratory of the Gas Disaster Detecting,Preventing and Emergency Controlling,Chongqing 400037,China;
2.CCTEG Chongqing Research Institute,Chongqing 400037,China;
3.Sichuan Dazhu Coal and Electricity (Group) Co.,Ltd,Dazhou Sichuan 635000,China)
关键词:
薄煤层群保护层开采卸压瓦斯瓦斯抽采模式数值计算
Keywords:
thin coal seam group protective layer mining pressure-relief gas gas drainage mode numeral calculation
分类号:
X936;TD712
DOI:
10.11731/j.issn.1673-193x.2021.11.010
文献标志码:
A
摘要:
为研究近距离薄煤层群上保护层开采期间邻近层卸压瓦斯对回采工作面瓦斯涌出的影响,进而有效杜绝保护层开采过程中工作面瓦斯积聚或超限等事故,结合煤岩体破碎前“应力-裂隙-渗透率”间关系,建立卸压瓦斯三维渗流模型。采用Flac3D软件,以新维煤矿煤层条件为工程背景,研究保护层开采过程采场渗透率沿纵向分布规律,确立下保护层C3煤层处于三维增渗区、C7与C8号煤层处于水平增渗区。基于此,提出“近场定向钻孔全覆盖抽采与远场穿层钻孔层间卸压抽采结合”的瓦斯治理技术模式,并开展现场试验,结果表明:试验工作面回风瓦斯浓度降低44.4%,绝对瓦斯涌出量降低52.3%,该模式可显著提高卸压瓦斯的治理效果,为类似工况下的保护层开采提出1种新的瓦斯抽采模式,具有一定的指导及借鉴意义。
Abstract:
To study the influence of pressure-relief gas from adjacent coal seams on the gas emission from working face during the upper protective layer mining of close thin coal seam groups,and also effectively prevent the gas accumulation or overrun accidents in the working face during the process of protective layer mining,combining the relationship among stress,fracture and permeability before the breaking of coal and rock mass,a three-dimensional seepage model of pressure-relief gas was established.Taking the coal seam conditions of Xinwei coal mine as the engineering background,the Flac3D software was used to study the longitudinal distribution laws of stope permeability during the process of protective layer mining,and it was determined that the lower protective layer C3 coal seam was in the three-dimensional increased permeability area,and the C7 and C8 coal seams were in the horizontal increased permeability area.On this basis,a gas control technology mode of “combination of full-coverage drainage by near-field directional boreholes and interlayer pressure-relief drainage by far-field cross-layer boreholes” was proposed,and the on-site tests were carried out.The results showed that the return air gas concentration of tested working face was reduced by 44.4%,and the absolute gas emission amount was reduced by 52.3%.This mode could significantly improve the control effect of pressure-relief gas,and proposed a new gas drainage mode for the protective layer mining under similar working conditions,which has certain guidance and reference significance.

参考文献/References:

[1]程远平,付建华,俞启香.中国煤炭瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139. CHENG Yuanping,FU Jianhua,YU Qixiang.Development of gas extraction technology in coal mines of china[J].Journal of Mining & Safety Engineering,2009,26(2):127-139.
[2]谢和平,王金华,王国法,等.煤炭革命新理念与煤炭科技发展构想[J].煤炭学报,2018,43(5):1187-1197. XIE Heping,WANG Jinhua,WANG Guofa,et al.New ideas of coal revolution and layout of coal science and technology development[J].Journal of China Coal Society,2018,43(5):1187-1197.
[3]李伟.深部煤炭资源智能化开采技术现状与发展方向[J].煤炭科学技术,2021,49(1):139-145. LI Wei.Current status and development direction of intelligent mining technology for deep coal resources[J].Coal Science and Technology,2021,49(1):139-145.
[4]韩颖,宋德尚.低渗煤层高压水射流割缝增透技术试验研究[J].中国安全生产科学技术,2014,10(12):35-39. HAN Ying,SONG Deshang.Experimental study on permeability improvement technology by cuttingseam using high pressure water jet in coal seam with low permeability[J].Journal of Safety Science and Technology,2014,10(12):35-39.
[5]张磊.保护层开采保护范围的确定及影响因素分析[J].煤矿安全,2019,50(7):205-210. ZHANG Lei.Determination of the mining protection range of the protective layer and analysis of the influencing factors[J].Coal Mine Safety,2019,50(7):205-210.
[6]刘勇,刘建磊,温志辉,等.多级破煤水力冲孔强化松软低透煤层瓦斯抽采技术研究[J].中国安全生产科学技术,2015,11(4):27-32. LIU Yong,LIU Jianlei,WEN Zhihui,et al.Study on technology of hydraulic punching by multi-stage coal breaking forenhancing gas drainage in soft coal seams with low permeability[J].Journal of Safety Science and Technology,2015,11(4):27-32.
[7]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
[8]程国建.中远距离上保护层开采被保护层卸压时空效应及应用研究[J].矿业安全与环保,2014,41(4):80-83. CHENG Guojian.Study on the time-space effect and application of pressure relief of the protected layer in the middle and long distance mining[J].Mining Safety and Environmental Protection,2014,41(4):80-83.
[9]林柏泉.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社,2005.
[10]刘志伟.突出煤层群保护层选择及开采程序优化[J].中州煤炭,2016(7):24-29. LIU Zhiwei.Selection of protective seam and optimization of mining procedure in outburst coal seams[J].Zhongzhou Coal,2016(7):24-29.
[11]王中华,曹建军.深部远距离煤层群首采层优选方法应用研究[J].煤炭科学技术,2020,48(12):67-71. WANG Zhonghua,CAO Jianjun.Research and application of optimization method for first mining seam in deep and long distance coal seam group[J].Coal Science and Technology,2020,48(12):67-71.
[12]胡杰,孙臣.穿层水力冲孔措施在低透煤层中有效影响半径效果考察[J].中国安全生产科学技术,2017,13(10):48-52. HU Jie,SUN Chen.Effect inspection on effective impact radius of hydraulic flushing measures by perforated drilling holes in low permeability coal seam[J].Journal of Safety Science and Technology,2017,13(10):48-52.
[13]杨威.煤层采场力学行为演化特征及瓦斯治理技术研究[D].徐州:中国矿业大学,2013.
[14]王伟,程远平,袁亮,等.深部近距离上保护层底板裂隙演化及卸压瓦斯抽采时效性[J].煤炭学报,2016,41(1):138-148. WANG Wei,CHENG Yuanping,YUAN Liang,et al.Floor fracture evolution and relief gas drainage timeliness in deeper underground short-dis-tance upper protective coal seam extraction[J].Journal of China Coal Society,2016,41(1):138-148.
[15]田富超,秦玉金,梁运涛,等.远距离煤层群采动区应力场与瓦斯流动场耦合机制研究及应用[J].采矿与安全工程学报,2015,32(6):1031-1036. TIAN Fuchao,QIN Yujin,LIANG Yuntao,et al.The application research of overlying strata stress field and gas flow field coupling mechanism under the long vertical distance coal seam group mining conditions[J].Journal of Mining & Safety Engineering,2015,32(6):1031-1036.
[16]MATHIAS S A,TANG C F,VAN R M.Investigation of hydromechanical processes during cyclic extraction recovery testing of a deformable rock fracture[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(3):517-522.

相似文献/References:

[1]贺爱萍,付华,路洋波,等.保护层开采被保护层膨胀变形分析方法[J].中国安全生产科学技术,2016,12(8):60.[doi:10.11731/j.issn.1673-193x.2016.08.010]
 HE Aiping,FU Hua,LU Yangbo,et al.Analysis method on swelling deformation of protected seam in the process of protective coal seam exploitation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(11):60.[doi:10.11731/j.issn.1673-193x.2016.08.010]
[2]施峰,汪华君,舒才,等.急倾斜上保护层开采保护效果的参数敏感度研究[J].中国安全生产科学技术,2019,15(4):128.[doi:10.11731/j.issn.1673-193x.2019.04.020]
 SHI Feng,WANG Huajun,SHU Cai,et al.Sensitivity analysis of influence of mining conditions on protective effects in steepinclined protective stratum mining engineering[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(11):128.[doi:10.11731/j.issn.1673-193x.2019.04.020]
[3]徐刚,王磊,金洪伟,等.上保护层开采对下部特厚煤层移动变形规律及保护效果考察研究[J].中国安全生产科学技术,2019,15(6):36.[doi:10.11731/j.issn.1673-193x.2019.06.006]
 XU Gang,WANG Lei,JIN Hongwei,et al.Study on movement deformation laws and protection effect of lower ultrathick coal seam affected by upper protective layer mining[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(11):36.[doi:10.11731/j.issn.1673-193x.2019.06.006]
[4]张毅,刘勇,江成玉,等.基于AHP-TOPSIS法综合评判的保护层开采选择*[J].中国安全生产科学技术,2021,17(6):65.[doi:10.11731/j.issn.1673-193x.2021.06.011]
 ZHANG Yi,LIU Yong,JIANG Chengyu,et al.Selection of protective layer mining based on comprehensive evaluation of AHP-TOPSIS method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(11):65.[doi:10.11731/j.issn.1673-193x.2021.06.011]

备注/Memo

备注/Memo:
收稿日期: 2021-04-25
* 基金项目: 国家重点研发计划项目(2018YFC0808001);中煤科工集团重庆研究院有限公司自立项目(2019ZDXM06)
作者简介: 胡杰,硕士,助理研究员,主要研究方向为瓦斯灾害预测与防治。
更新日期/Last Update: 2021-12-08