|本期目录/Table of Contents|

[1]欧元超,胡富彭,谭磊,等.城市地铁岩溶隐患多孔电阻率联合成像技术研究*[J].中国安全生产科学技术,2021,17(4):141-146.[doi:10.11731/j.issn.1673-193x.2021.04.023]
 OU Yuanchao,HU Fupeng,TAN Lei,et al.Study on multi-hole resistivity combined imaging technology of karst hidden dangers in urban subway[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(4):141-146.[doi:10.11731/j.issn.1673-193x.2021.04.023]
点击复制

城市地铁岩溶隐患多孔电阻率联合成像技术研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年4期
页码:
141-146
栏目:
职业安全卫生管理与技术
出版日期:
2021-04-30

文章信息/Info

Title:
Study on multi-hole resistivity combined imaging technology of karst hidden dangers in urban subway
文章编号:
1673-193X(2021)-04-0141-06
作者:
欧元超胡富彭谭磊姜寒阳陈兴海
(1.安徽理工大学 地球与环境学院,安徽 淮南 232001;
2.南京南大岩土工程技术有限公司,江苏 南京 210000;
3.浙江省水利河口研究院(浙江省海洋规划设计研究院),浙江 杭州 310020;
4.安徽惠洲地质安全研究院股份有限公司,安徽 合肥 230601)
Author(s):
OU Yuanchao HU Fupeng TAN Lei JIANG Hanyang CHEN Xinghai
(1.School of Earth and Environment,Anhui University of Science and Technology,Huainan Anhui 232001,China;
2.Nanjing Nanda Geotecnical Engineering Co.,Ltd.,Nanjing Jiangsu 210000,China;
3.Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design),Hangzhou Zhejiang 310020,China;
4.Anhui Huizhou Geology Security Institute Co.,Ltd.,Hefei Anhui 230601,China)
关键词:
隧道施工安全地质灾害溶洞探测跨孔电阻率CT三维电阻率反演
Keywords:
tunnel construction safety geological disaster karst cave detection cross-hole resistivity CT 3D resistivity inversion
分类号:
X947
DOI:
10.11731/j.issn.1673-193x.2021.04.023
文献标志码:
A
摘要:
为有效解决二维电法在探测异常体空间形态上的不足,基于有限差分算法,建立溶洞与跨孔电阻率组合模型,探讨溶洞剖面投影位置及偏移距与电阻率响应变化特征,将跨孔电阻率数据体进行跨孔三维联合反演成像。结果表明:溶洞模型距跨孔探测剖面较近时,实际投影至剖面上位置不同,导致探测效果差异较大;随溶洞模型偏移距增大,溶洞投影中心位置电阻率整体表现为前期缓慢、中期迅速、后期减缓并最终趋于稳定的非线性变化趋势,溶洞模型旁侧效应影响范围约8 m。三维联合反演结果能立体可视化展示溶洞空间发育形态,在城市地铁超前地质灾害精准探测方面具有一定应用价值。
Abstract:
In order to effectively solve the shortcomings of the two-dimensional electrical method in detecting the spatial morphology of anomalous bodies,based on the finite difference algorithm,a combined model of karst cave and cross-hole resistivity was established,and the response variation characteristics of resistivity section caused by the projection position and offset of the karst cave profile were discussed.The idea of conducting multihole three-dimensional resistivity combined imaging on the interhole profile resistivity data volume was proposed,and the verification was conducted combining with the advanced detection engineering case of karst cave in the urban subway.The results showed that when the karst cave model was closer to the crosshole detection profile,the position of actual projection to the profile was different,and the detection effect had greater difference.As the offset of karst cave model increased,the resistivity at the center of karst cave projection overall presented the nonlinear increase stage of slow in the early stage,rapid in the middle stage,slowing down in the later stage and eventually tending to be stable,and the side effect influence range of the cave model was about 8 m.Compared with the 2D cross-hole resistivity CT inversion,the 3D combined inversion could stereoscopically and visually display the spatial development morphology of karst caves in the survey area.The research results have certain application value in the advanced accurate detection of geological disasters in urban subway.

参考文献/References:

[1]黄强兵,彭建兵,王飞永,等.特殊地质城市地下空间开发利用面临的问题与挑战[J].地学前缘,2019,26(3):85-94. HUANG Qiangbing,PENG Jianbing,WANG Feiyong,et al.Issues and challenges in the development of urban underground space in adverse geological environment[J].Earth Science Frontiers,2019,26(3):85-94.
[2]李学军.我国城市物探的应用与发展[J].地球物理学进展,2011,26(6):2221-2231. LI Xuejun.Applications and development of city geophysical prospecting in China.Progress in Geophysics[J].2011,26(6):2221-2231.
[3]方熠,张慧,朱莹,等.环境与工程地球物理技术研究及应用述评[J].安全与环境工程,2018,25(6):8-18. FANG Yi,ZHANG Hui,ZHU Ying,et al.Review on the application of geophysical exploration technology in the field of environment and engineering[J].Safety and Environmental Engineering,2018,25(6):8-18.
[4]戴前伟,肖波,冯德山,等.基于二维高密度电阻率勘探数据的三维反演及应用[J].中南大学学报(自然科学版),2012,43(1):293-300. DAI Qianwei,XIAO Bo,FENG Deshan,et al.3-D inversion of high density resistivity method based on 2-D exploration data and its application[J].Journal of Central South University (Science and Technology),2012,43(1):293-300.
[5]魏锋,陈忠达,张震,等.溶洞在电阻率层析成像图中的成像特征及其解释推断[J].长安大学学报(自然科学版),2018,38(5):227-236. WEI Feng,CHEN Zhongda,ZHANG Zhen,et al.Imaging characteristics and interpretation for karst caves using electrical resistivity tomography[J].Journal of Chang’an University (Natural Science Edition),2018,38(5):227-236.
[6]FENG D S,DAI Q W,XIAO B.Contrast between 2D inversion and 3D inversion based on 2D high-density resistivity data[J].Transactions of Nonferrous Metals Society of China,2014,24(1):224-232.
[7]郑智杰.地形起伏对高密度电法探测地下岩溶管道的影响试验研究[J].工程地质学报,2017,25(1):230-236. ZHENG Zhijie.Experimental study on influence of terrain fluctuation to high density resistivity method for detecting underground karst pipes[J].Journal of Engineering Geology,2017,25(1):230-236.
[8]欧元超,胡雄武,徐宝超,等.夹角和偏移距对岩溶区高密度电法响应特征的影响试验研究[J].水利水电技术,2018,49(6):156-163. OU Yuanchao,HU Xiongwu,XU Baochao,et al.Experimental study on influence fromincluded angle and offset on response characteristics of high-density electrical method in karst area[J].Water Resources and Hydropower Engineering,2018,49(6):156-162.
[9]孟凡松,张刚,陈梦君,等.高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J].物探与化探,2019,43(3):672-678. MENG Fansong,ZHANG Gang,CHEN Mengjun,et al.3-D inversion of high density resistivity method based on 2-D high-density electrical prospecting data and its engineering application[J].Geophysical and Geochemical Exploration,2019,43(3):672-678.
[10]李术才,苏茂鑫,薛翊国,等.城市地铁跨孔电阻率CT超前地质预报方法研究[J].岩石力学与工程学报,2014,33(5):913-920. LI Shucai,SU Maoxin,XUE Yiguo,et al.Study on computed tomography of cross-hole resistivity in urban subway geological prediction[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(5):913-920.
[11]胡富彭,欧元超,付茂如.不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J].中国岩溶,2019,38(5):766-773. HU Fupeng,OU Yuanchao,FU Maoru.Study on numerical simulation of karst cross-hole resistivity CT exploration at cave with different filling media[J].Carsologica Sinica,2019,38(5):766-773.
[12]刘征宇,庞永昊,王传武,等.基于不完整边界先验信息的跨孔电阻率CT反演方法研究[J].岩土工程学报,2019,41(6):1124-1132. LIU Zhengyu,PANG Yonghao,WANG Chuanwu,et al.Cross-hole resistivity inversion method constrained by prior information of incomplete boundary[J].Chinese Journal of Geotechnical Engineering,2019,41(6):1124-1132.
[13]刘征宇.电阻率跨孔CT探测方法及其工程应用[D].济南:山东大学,2014.
[14]AGI Software Demos.http://www.agiusa.com/files/eicust/earthimageruser.shtml.
[15]刘盛东,张平松.分布式并行智能电极电位差信号采集方法和系统:CN1616987[P].2005-05-18.

相似文献/References:

[1]焦星东,罗勇平,孙忠强.基于Mapgis技术的地质灾害气象预警系统研究[J].中国安全生产科学技术,2010,6(4):103.
[2]朱毅川,徐克,王兴发,等.云南电网地质灾害易损性评估与区划[J].中国安全生产科学技术,2013,9(9):148.[doi:10.11731/j.issn.1673-193x.2013.09.028]
 ZHU Yi chuan,XU Ke,WANG Xing fa,et al.Vulnerability analysis and regionalization of Yunnan power grid caused by geological disaster[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(4):148.[doi:10.11731/j.issn.1673-193x.2013.09.028]
[3]张小趁,陈红旗.突发地质灾害应急响应:避险模式研究[J].中国安全生产科学技术,2015,11(9):57.[doi:10.11731/j.issn.1673-193x.2015.09.009]
 ZHANG Xiao-chen,CHEN Hong-qi.Study on refuge mode of emergency response in geological hazard[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(4):57.[doi:10.11731/j.issn.1673-193x.2015.09.009]
[4]张银辉,帅健,张航,等.1种基于云服务平台的滑坡管道状态远程实时监测系统[J].中国安全生产科学技术,2020,16(2):124.[doi:10.11731/j.issn.1673-193x.2020.02.020]
 ZHANG Yinhui,SHUAI Jian,ZHANG Hang,et al.A remote realtime monitoring system for landslide pipeline state based on cloud service platform[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(4):124.[doi:10.11731/j.issn.1673-193x.2020.02.020]
[5]王金安,陈梦雨,周家兴,等.露天矿地质灾害应急救援智能调度系统研究*[J].中国安全生产科学技术,2022,18(9):103.[doi:10.11731/j.issn.1673-193x.2022.09.015]
 WANG Jinan,CHEN Mengyu,ZHOU Jiaxing,et al.Research on intelligent dispatching system of emergent rescue for geological disasters in open-pit mines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(4):103.[doi:10.11731/j.issn.1673-193x.2022.09.015]

备注/Memo

备注/Memo:
收稿日期: 2021-01-27
* 基金项目: 国家重点研发计划项目(2016YFC0600900);安徽理工大学研究生创新基金项目(2019CX1002);浙江省基础公益研究计划项目(LGF20D040001);浙江省水利科技项目(RB1901)
作者简介: 欧元超,博士研究生,主要研究方向为工程与环境地球物理探测。
更新日期/Last Update: 2021-05-09