|本期目录/Table of Contents|

[1]徐畀泽,李希建.突出冲击波对防突风门的破坏失效研究*[J].中国安全生产科学技术,2020,16(8):113-118.[doi:10.11731/j.issn.1673-193x.2020.08.018]
 XU Bize,LI Xijian.Research on damage failure of outburst prevention air door under outburst shock wave[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(8):113-118.[doi:10.11731/j.issn.1673-193x.2020.08.018]
点击复制

突出冲击波对防突风门的破坏失效研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年8期
页码:
113-118
栏目:
职业安全卫生管理与技术
出版日期:
2020-08-31

文章信息/Info

Title:
Research on damage failure of outburst prevention air door under outburst shock wave
文章编号:
1673-193X(2020)-08-0113-06
作者:
徐畀泽李希建
(1.贵州大学 矿业学院,贵州 贵阳 550025;
2.贵州大学 瓦斯灾害防治与煤层气开发研究所,贵州 贵阳 550025;
3.贵州大学 复杂地质矿山开采安全技术工程中心,贵州 贵阳 550025)
Author(s):
XU Bize LI Xijian
(1.College of Mining,Guizhou University,Guiyang Guizhou 550025,China;
2.Gas Disaster Prevention and Control and Coal Bed Methane Development Institute,Guizhou University,Guiyang Guizhou 550025,China;
3.Mining Safety Technology Engineering Center of Complex Geology Mine,Guizhou University,Guiyang Guizhou 550025,China)
关键词:
煤与瓦斯突出冲击波防突风门最大挠度数值模拟
Keywords:
coal and gas outburst shock wave outburst prevention air door maximum deflection numerical simulation
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2020.08.018
文献标志码:
A
摘要:
为了分析煤与瓦斯突出事故中防突风门的安全性,同时降低成本寻求对现有防突风门材料和结构的替代方案,研究不同厚度的Q460钢制防突风门在突出冲击波载荷下的破坏情况。基于能量法得到不同厚度的风门最大挠度数学模型,再根据煤炭行业规定中的对应数据和安全要求,运用LS-DYNA软件对冲击载荷下的风门破坏进行数值模拟,得到Q460钢制防突风门的静力学特征并与能量法结果进行比对。结果表明:长宽分别为1.75 m和1.8 m,厚度为25 mm和30 mm的风门在0.6 MPa的冲击波超压作用下能满足安全要求,能量法计算结果与数值模拟误差在9%以内,基于安全设计余量可以接受;提出挠厚比概念,当挠厚比小于0.84时,风门不会被破坏,在使用Q460钢设计防突风门时,应尽量确保该值小于0.84。
Abstract:
In order to analyze the safety of outburst prevention air door in the coal and gas outburst accident,and reduce the cost and seek the alternative solutions to the existing materials and structures of outburst prevention air door at the same time,the damage of outburst prevention air door made of Q460 steel with different thicknesses under the load of outburst shock wave was studied.Based on the energy method,a mathematical model for the maximum deflection of outburst prevention air door with different thicknesses was obtained,and combined with the corresponding data and safety requirements stipulated by the coal industry,the LS-DYNA software was used to numerically simulate the failure of outburst prevention air door under the impact load,then the static characteristics of outburst prevention air door made of Q460 steel were obtained and compared with the results of the energy method.The results showed that the outburst prevention air door with the length of 1.75 m,the width of 1.8 m and the thickness of 25 mm and 30 mm respectively could satisfy the safety requirements under the action of 0.6 MPa shock wave overpressure,and the error range between the results of energy method and the numerical simulation was within 9%,which was acceptable based on the safety design margin.The concept of deflectionthickness ratio was proposed.When the deflectionthickness ratio was less than 0.84,the outburst prevention air door would not be damaged.When the Q460 steel was used to design the outburst prevention air door,this value should be less than 0.84 as far as possible.

参考文献/References:

[1]ZHOU A T,FAN L P,WANG K,et al.Multiscale modeling of shock wave propagation induced by coal and gas outbursts[J].Process Safety and Environmental Protection,2019,125:164-171.
[2]YUAN L.Control of coal and gas outbursts in Huainan mines in China:a review[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8:559-567.
[3]李希建,林柏泉.煤与瓦斯突出机理研究现状及分析[J].煤田地质与勘探,2010,38(1):7-13. LI Xijian,LIN Baiquan.Research status and analysis of coal and gas outburst mechanism [J].Coal Geology & Exploration,2010,38 (1):7-13.
[4]ZHOU A T,WANG K,WANG L,et al.Numerical simulation for propagation characteristics of shock wave and gas flow induced by outburst intensity[J].International Journal of Mining Science and Technology,2015,25:107-112.
[5]WANG C J,YANG S Q,YANG D D,et al.Experimental analysis of the intensity and evolution of coal and gas outbursts[J].Fuel,2018,226:252-262.
[6]张小兵,闫江伟.瓦斯突出煤体形成的物理条件和过程[J].中国安全生产科学技术,2014,10(11):48-53. ZHANG Xiaobing,YAN Jiangwei.Physical conditions and process of gas outburst coal forming [J].Journal of Safety Science and Technology,2014,10 (11):48-53.
[7]邓海波.防逆流防突风门在突出矿井的应用[J].煤矿现代化,2017(6):126-128. DENG Haibo.Application of anti-adverse flow and anti-outburst damper in outburst mine [J].Coal Mine Modernization,2017(6):126-128.
[8]刘三钧,李少华.防突风门联动式防逆风窗装置研究[J].煤炭科学技术,2018,46(S1):143-145. LIU Sanjun,LI Shaohua.Research on the joint anti-upwind window device of anti-outburst damper [J].Coal Science and Technology,2018,46 (S1):143-145.
[9]吴爱军,蒋承林.煤与瓦斯突出冲击波传播规律研究[J].中国矿业大学学报,2011,40(6):852-857. WU Aijun,JIANG Chenglin.Study on propagation law of coal and gas outburst shockwave [J].Journal of China University of Mining & Technology,2011,40(6):852-857.
[10]杨书召,张瑞林.煤与瓦斯突出冲击波及瓦斯气流所致伤害研究[J].中国安全科学学报,2012,22(11):62-66. YANG Shuzhao,ZHANG Ruilin.Research on injuries caused by coal and gas outburst impact and gas flow [J].China Safety Science Journal,2012,22 (11):62-66.
[11]苗法田,孙东玲,胡千庭.煤与瓦斯突出冲击波的形成机理[J].煤炭学报,2013,38(3):365-372. MIAO Fatian,SUN Dongling,HU Qianting.Formation mechanism of coal and gas outburst shock wave [J].Journal of China Coal Society,2013,38 (3):365-372.
[12]张建方,王凯,韦采平.煤与瓦斯突出冲击波的形成与传播规律研究[J].采矿与安全工程学报,2010,27(1):67-71. ZHANG Jianfang,WANG Kai,WEI Caiping.Study on the formation and propagation of coal and gas outburst shock wave [J].Journal of Mining and Safety Engineering,2010,27 (1):67-71.
[13]ZHOU A T,WANG K,WANG L,et al.Numerical simulation for propagation characteristics of shock wave and gas flow induced by outburst intensity[J].International Journal of Mining Science and Technology,2015,25:107-112.
[14]程卫民,王刚,周刚,等.煤与瓦斯突出后对防突风门破坏的数值模拟[J].重庆大学学报,2009,32(3):314-318. CHENG Weimin,WANG Gang,ZHOU Gang,et al.Numerical simulation of blast damper failure after coal and gas outburst [J].Journal of Chongqing university,2009,32 (3):314-318.
[15]金珠鹏,郭鹏飞,孙广义,等.矿井煤与瓦斯突出规律及挡突装置数值模拟[J].黑龙江科技大学学报,2014,24(4):354-359. JIN Zhupeng,GUO Pengfei,SUN Guangyi,et al.Rules of coal and gas outburst and numerical simulation of blocking devices in coal mines [J].Journal of Heilongjiang University of Science and Technology,2014,24(4):354-359.
[16]胡维嘉.突出瓦斯—粉煤流冲击动力效应的理论和试验研究[D].北京:中国矿业大学(北京),2013.
[17]程五一,陈国新.煤与瓦斯突出冲击波的形成及模型建立[J].煤矿安全,2000(9):23-25. CHENG Wuyi,CHEN Guoxin.Formation and modeling of coal and gas outburst shock wave [J].Safety in Coal Mines,2000(9):23-25.
[18]程五一,刘晓宇,王魁军,等.煤与瓦斯突出冲击波阵面传播规律的研究[J].煤炭学报,1998(S1):26-28. CHENG Wuyi,LIU Xiaoyu,WANG Kuijun,et al.Study on the propagation law of coal and gas outburst shockwave front [J].Journal of China Coal Society,1998(S1):26 -28.
[19]国家安全生产监督管理总局.煤与瓦斯突出矿井反向风门设置技术条件:MT 1066—2008[S].北京:煤炭工业出版社,2009.

相似文献/References:

[1]马冬娟,李增华,杨永良,等.基于激波理论的新兴煤矿煤与瓦斯突出事故研究[J].中国安全生产科学技术,2012,8(8):69.
 MA Dong juan,LI Zeng hua,YANG Yong liang,et al.Research on coal and gas outburst accident of Xinxing coal mine based on shock wave theory[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(8):69.
[2]郑万成,邓小松,李一波.混合煤样中软分层对煤与瓦斯突出的影响[J].中国安全生产科学技术,2012,8(12):5.
 ZHENG Wan cheng,DENG Xiao song,LI Yi bo.Effect of soft layer in the mixed coal on coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(8):5.
[3]吴鑫,隆泗.不同煤粒粒级配比下的煤与瓦斯突出实验研究[J].中国安全生产科学技术,2012,8(12):16.
 WU Xin,LONG Si.Experimental study on the influence of coal particle size on coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(8):16.
[4]石庆礼,杨胜强.数量化理论Ⅲ及其在煤与瓦斯突出危险性评估中的应用[J].中国安全生产科学技术,2013,9(6):69.[doi:10.11731/j.issn.1673-193x.2013.06.013]
 SHI Qing li,YANG Sheng qiang.Quantification theory III and its application in the evaluation of coal and gas otburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):69.[doi:10.11731/j.issn.1673-193x.2013.06.013]
[5]翟盛锐,李忠祥.矿井围岩应力松弛区理论计算与试验研究[J].中国安全生产科学技术,2013,9(7):105.[doi:10.11731/j.issn.1673-193x.2013.07.018]
 ZHAI Sheng rui,LI Zhong xiang.Theoretical calculation and experimental research on slack stress zone of surrounding rocks in coal mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):105.[doi:10.11731/j.issn.1673-193x.2013.07.018]
[6]杨凯,王寿全,范映冲,等.煤与瓦斯突出危险性的未知权重多属性综合评价模型[J].中国安全生产科学技术,2013,9(10):33.[doi:10.11731/j.issn.1673-193x.2013.10.006]
 YANG Kai,WANG Shou quan,FAN Ying chong,et al.Unknown weight multiple attribute model for evaluating risk of coal and gas outburst[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):33.[doi:10.11731/j.issn.1673-193x.2013.10.006]
[7]潘飞,高朋飞,杨翎,等.爆炸冲击波在多级穿廊结构坑道内传播规律的数值分析[J].中国安全生产科学技术,2013,9(11):48.[doi:10.11731/j.issn.1673-193x.2013.11.008]
 PAN Fei,GAO Peng fei,YANG Ling,et al.Numerical investigation on blast shock wave propagation of an explosion inside its entrance to a multilevel hallery tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(8):48.[doi:10.11731/j.issn.1673-193x.2013.11.008]
[8]张文涛,吕品,孙晓梅,等.张集矿综采工作面瓦斯治理措施及效果分析[J].中国安全生产科学技术,2014,10(1):103.[doi:10.11731/j.issn.1673-193x.2014.01.017]
 ZHANG Wen-tao,LV Pin,SUN Xiao-mei,et al.Study on gas control measures and effect analysis in mechanized mining face of Zhang Ji Coal Mine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):103.[doi:10.11731/j.issn.1673-193x.2014.01.017]
[9]蔺照东,李如江,刘恩良,等.障碍物对瓦斯爆炸冲击波影响研究[J].中国安全生产科学技术,2014,10(2):28.[doi:10.11731/j.issn.1673-193x.2014.02.005]
 LIN Zhao dong,LI Ru jiang,LIU En liang,et al.Study on effect of obstacles to shock wave of gas explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):28.[doi:10.11731/j.issn.1673-193x.2014.02.005]
[10]杨力,耿纪超,汪克亮.模糊支持向量机在煤与瓦斯突出预测中的研究[J].中国安全生产科学技术,2014,10(4):103.[doi:10.11731/j.issn.1673-193x.2014.04.018]
 YANG Li,GENG Ji chao,WANG Ke liang.Research on coal and gas outburst prediction using fuzzy support vector machines[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(8):103.[doi:10.11731/j.issn.1673-193x.2014.04.018]

备注/Memo

备注/Memo:
收稿日期: 2020-07-10
* 基金项目: 国家自然科学基金项目(51874107);贵州省科技计划项目([2018]5781)
作者简介: 徐畀泽,硕士研究生,主要研究方向为瓦斯灾害防治。
更新日期/Last Update: 2020-09-10