|本期目录/Table of Contents|

[1]赵金龙,田逢时,赵利宏,等.航空煤油薄油层燃烧特性实验研究[J].中国安全生产科学技术,2020,16(5):129-135.[doi:10.11731/j.issn.1673-193x.2020.05.020]
 ZHAO Jinlong,TIAN Fengshi,ZHAO Lihong,et al.Experimental study on burning characteristics of thinlayer aviation kerosene[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(5):129-135.[doi:10.11731/j.issn.1673-193x.2020.05.020]
点击复制

航空煤油薄油层燃烧特性实验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年5期
页码:
129-135
栏目:
职业安全卫生管理与技术
出版日期:
2020-05-30

文章信息/Info

Title:
Experimental study on burning characteristics of thinlayer aviation kerosene
文章编号:
1673-193X(2020)-05-0129-07
作者:
赵金龙田逢时赵利宏黄弘杨锐
(1.中国矿业大学(北京) 应急管理与安全工程学院,北京 100083;
2.清华大学 公共安全研究院,北京 100084;
3.中国建筑科学研究院有限公司,北京 100013;
4.中国人民警察大学,河北 廊坊 065000)
Author(s):
ZHAO Jinlong TIAN Fengshi ZHAO Lihong HUANG Hong YANG Rui
(1.School of Emergency Management & Safety Engineering,China University of Mining & Technology (Beijing),Beijing 100083,China;
2.Institute of Public Safety Research,Tsinghua University,Beijing 100084,China;
3.China Academy of Building Research,Bei
关键词:
薄油层油池火燃烧速率火焰高度辐射透射
Keywords:
thinlayer oil pool fire burning rate flame height radiative penetration
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2020.05.020
文献标志码:
A
摘要:
为研究薄油层燃烧特性,开展航空煤油薄层油池火实验,分析油品燃烧的整个过程、燃烧速率、火焰高度和辐射反馈等参数随时间的变化规律。结果表明:整个薄层燃烧过程除发展、稳定和熄灭阶段外,还存在薄层燃烧衰减阶段。稳定阶段的燃烧速率与初始油层厚度相关,但随着厚度的增加其逐渐趋于稳定;薄层燃烧衰减阶段,燃烧速率会随着实时油层厚度的下降逐渐降低。对比火焰高度的实测值和模型预测值发现,Heskestad模型的预测更接近实际结果;燃烧发展阶段后,火焰辐射反馈基本维持稳定,受初始厚度的影响较小,但辐射透射强度会随着油层厚度的降低而增加,且增速逐渐加快,表明辐射透射在薄层燃烧衰退阶段中起到关键作用。结合辐射透射的变化规律,将辐射反馈分为可吸收和不可吸收2部分,并提出用于预测辐射透射大小的经验模型。
Abstract:
In order to study the burning characteristics of thinlayer oil,the experiments on the pool fire of thinlayer aviation kerosene were carried out,and the change laws of the whole burning process,burning rate,flame height,radiation feedback and other parameters with time were analyzed.The results showed that the whole burning process of thinlayer existed the stage of thinlayer burning attenuation besides the stages of development,steady and extinguishment.The burning rate in the steady stage was related to the initial thickness of oil layer,but it tended to be stable gradually with the increase of thickness.In the stage of thinlayer burning attenuation,the burning rage decreased gradually with the decrease of realtime oil layer thickness.Through comparing the measured values and predicted values by models of flame height,it showed that the prediction results of Heskestad model were more approaching to the actual results.After the stage of burning development,the radiation feedback of flame remained to be stable basically,which was slightly affected by the initial thickness.However,the radiative penetration intensity increased with the decrease of oil layer thickness,and the increasing rate accelerated gradually,which showed that the radiative penetration played the key function in the stage of thinlayer burning attenuation.Combined with the variation laws of radiative penetration,the radiation feedback was divided into two parts of absorbable and nonabsorbable,and an empirical model for predicting the radiative penetration was put forward.

参考文献/References:

[1]LI M,LU S,GUO J,et al.Effects of pool dimension on flame spread of aviation kerosene coating on a metal substrate[J].International Journal of Heat and Mass Transfer,2015,84:54-60.
[2]庄磊.航空煤油池火热辐射特性及热传递研究[D].合肥:中国科学技术大学,2008.
[3]新华社.俄罗斯客机迫降44人死亡(组图)[EB/OL].(2011-06-21)[2020-03-21].https://news.qq.com/a/20110621/001226_1.htm.
[4]BABRAUSKAS V.Estimating large pool fire burning rates [J].Fire Technology,1983,19(4):251-261.
[5]ZHAO J L,ZHU H,ZHANG J,et al.Experimental study on the spread and burning behaviors of continuously discharge spill fires under different slopes[J].Journal of Hazardous Materials,2020,392:122352.
[6]庄磊,陆守香,孙志友,等.航空煤油池火焰高度特征研究[J].中国科学技术大学学报,2009,39(7):763-768. ZHUANG Lei,LU Shouxiang,SUN Zhiyou,et al.Study of flame height of aviation fuel pool fires [J].Journal of University of Science and Technology of China,2009,39(7):763-768.
[7]TAO Y,LU K,CHEN X,et al.Experimental investigation on the temperature profile of large scale RP-5 aviation kerosene pool fire in an open space [J].Fuel,2020,264:116852.
[8]童琳,张瑞芳,谢启源,等.有风条件下航空煤油池火燃烧特性的实验研究[J].火灾科学,2010,19(3):123-130. TONG Lin,ZHANG Ruifang,XIE Qiyuan,et al.Experimental study of aviation fuel pool fire combustion characteristics with wind [J].Fire Safety Science,2010,19(3):123-130.
[9]PARENT G,EREZ G,COLLIN A,et al.Spectral radiation emitted by kerosene pool fires[J].Fire Safety Journal,2019,108:102847.
[10]MEALY C,BENFER M,GOTTUK D.Liquid fuel spill fire dynamics[J].Fire Technology,2014,50(2):419-436.
[11]ZHAO J L,HUANG H,JOMAAS G,et al.Spread and burning behavior of continuous spill fires [J].Fire Safety Journal,2017,91:347-354.
[12]GARO J P,GILLARD P,VANTELON J P,et al.Combustion of liquid fuels spilled on water.Prediction of time to start of boilover [J].Combustion Science and Technology,1999,147(1-6):39-59.
[13]FERRERO F,MUOZ M,KOZANOGLU B,et al.Experimental study of thin-layer boilover in large-scale pool fires [J].Journal of Hazardous Materials,2006,137(3):1293-1302.
[14]LU K,HU L,DELICHATSIOS M,et al.Merging behavior of facade flames ejected from two windows of an under-ventilated compartment fire [J].Combustion Institute,2015,35(3):2615-2622.
[15]LI Y,HUANG H,WANG Z,et al.An experimental and modeling study of continuous liquid fuel spill fires on water [J].Journal of Loss Prevention in the Process Industries,2015,33:250-257.
[16]TOREROJ L,OLENICK S M,GARO J P,et al.Determination of the burning characteristics of a slick of oil on water[J].Spill Science & Technology Bulletin,2003,8(4):379-390.
[17]SUO-ANTTILA J M,BLANCHAT T K,RICKS A J,et al.Characterization of thermal radiation spectra in 2 m pool fires[J].Proceedings of the Combustion Institute,2009,32(2):2567-2574.
[18]HAMINS A,FISCHER S J,KASHIWAGI T,et al.Heat feedback to the fuel surface in pool fires [J].Combustion Science and Technology,1994,97(1-3):37-62.
[19]ZUKOSKIE E,CETEGEN B M,KUBOTA T.Visible structure of buoyant diffusion flames[J].Combustion Institute,1985,20(1):361-366.
[20]QUINTIERE J G.Fundamentals of fire phenomena [M].Massachusetts:John Wiley & Sons,2006.
[21]FAY J A.Model of large pool fires [J].Journal of Hazardous Materials,2006,136(2):219-232.
[22]MCCAFFREY B.The SFPE handbook of fire protection engineering:2nd ed.[M].Quincy:Society of Fire Protection Engineers and National Fire Protection Association,1995.
[23]HESKESTAD G.Luminous heights of turbulent diffusion flames [J].Fire Safety Journal,1983,5(2):103-108.
[24]DRYSDALE D.An introduction to fire dynamics [M].Scotland,UK:John Wiley & Sons,2011.
[25]ARAI M,SAITO K,ALTENKIRCH R A.A study of boilover in liquid pool fires supported on water part I:effects of a water sublayer on pool fires [J].Combustion Science and Technology,1990,71(1-3):25-40.

相似文献/References:

[1]陈涛,胡成,包志明,等.公路隧道压缩空气泡沫系统灭油池火实验研究[J].中国安全生产科学技术,2017,13(7):30.[doi:10.11731/j.issn.1673-193x.2017.07.005]
 CHEN Tao,HU Cheng,BAO Zhiming,et al.Experimental study on extinguishing of pool fire with compressed air foam system in road tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(5):30.[doi:10.11731/j.issn.1673-193x.2017.07.005]
[2]李继康,张玉春,毛鹏飞.半封闭空间中水喷淋和泡沫灭火系统灭油池火实验研究[J].中国安全生产科学技术,2018,14(4):25.[doi:10.11731/j.issn.1673-193x.2018.04.004]
 LI Jikang,ZHANG Yuchun,MAO Pengfei.Experimental study on extinguishing pool fire by foam and water spray fire extinguishing systems in semi-enclosed space[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(5):25.[doi:10.11731/j.issn.1673-193x.2018.04.004]

备注/Memo

备注/Memo:
收稿日期: 2020-03-11;网络首发日期: 2020-05-08
* 基金项目: 国家自然科学基金项目(71774093)
作者简介: 赵金龙,博士,讲师,主要研究方向为城市风险评估、液体火灾机理研究。
通信作者: 田逢时,博士研究生,主要研究方向为储罐火灾、城市风险评估。
更新日期/Last Update: 2020-06-10