|本期目录/Table of Contents|

[1]秦浩,刘磊,安华明,等.基于不同强度等级混凝土的动力学特性研究[J].中国安全生产科学技术,2019,15(12):115-121.[doi:10.11731/j.issn.1673-193x.2019.12.019]
 QIN Hao,LIU Lei,AN Huaming,et al.Study on dynamic characteristics of concrete based on different strength grades[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(12):115-121.[doi:10.11731/j.issn.1673-193x.2019.12.019]
点击复制

基于不同强度等级混凝土的动力学特性研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年12期
页码:
115-121
栏目:
职业安全卫生管理与技术
出版日期:
2019-12-31

文章信息/Info

Title:
Study on dynamic characteristics of concrete based on different strength grades
文章编号:
1673-193X(2019)-12-0115-07
作者:
秦浩刘磊安华明曹俊阳刘申张 候舜
(1.昆明理工大学 国土资源工程学院,云南 昆明 650093;
2.昆明理工大学 公共安全与应急管理学院,云南 昆明 650093;
3.中铁高铁电气装备股份有限公司,陕西 宝鸡 721006;
4.昆明国土资源工程学院,云南 昆明 650093)
Author(s):
QIN Hao LIU Lei AN Huaming CAO Junyang LIU Shenzhang HOU Shun
(1.Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming Yunnan 650093,China;
2.Faculty of Public Safety and Emergency Management,Kunming University of Science and Technology,Kunming Yunnan 650093,China;
3.China Railway Highspeed Railway Electrical Equipment Co.,Ltd.,Baoji Shaanxi 721006,China;
4.Kunming Institute of Land and Resources Engineering,Kunming Yunnan 650093,China)
关键词:
混凝土类材料SHPB强度等级中高应变率
Keywords:
concretelike material SHPB strength grade mediumhigh strain rate
分类号:
X936;TU528.1
DOI:
10.11731/j.issn.1673-193x.2019.12.019
文献标志码:
A
摘要:
基于TAW-2000D电液伺服岩石三轴仪和直径75 mm的霍普金森压杆试验装置,得到了C25,C35和C45混凝土在静、动载荷作用下的应力-应变曲线,探讨了混凝土强度等级、动态峰值强度、峰值应变和应变率之间的变化规律。结果表明:混凝土准静态应力-应变曲线和动态应力-应变曲线在形态上存在明显差异,动态应力-应变曲线的峰值点随应变率的增大向右上方移动,线弹性阶段各曲线斜率变化不明显;动态峰值应力、动态弹性模量和峰值应变均存在不同程度的率相关性,并且混凝土材料的应变率敏感性随其强度等级的提高而增强;混凝土C45的各力学指标对应变率的敏感性最强,C35次之,C25的应变率敏感性最弱;推导了应变率与强度等级和冲击速率之间的经验公式,三者之间存在非线性变化规律。
Abstract:
Based on the TAW-2000D electrohydraulic servo rock triaxial apparatus and the 75 mm diameter Hopkinson pressure bar test device,the stressstrain curves of C25,C35 and C45 concrete under the static and dynamic loads were obtained,and the change laws of concrete strength grade,dynamic peak strength,peak strain and strain rate were studied.The results showed that the quasistatic stressstrain curve and the dynamic stressstrain curve of concrete had obvious difference in morphology.The peak point of dynamic stressstrain curve moved towards the upper right with the increase of strain rate,and the slope change of each curve in the linear elastic stage was not obvious.All the dynamic peak stress,dynamic elastic modulus and peak strain had the rate dependence with different degrees,and the strain rate sensitivity of concrete material enhanced with the increase of its strength grade.It was found that each mechanical index of concrete C45 had the strongest sensitivity to the strain rate,followed by C35,and the strain rate sensitivity of C25 was the weakest.The empirical formula between the strain rate and the strength grade and impact velocity was derived,and there was a nonlinear variation law between them.

参考文献/References:

[1]MARTIN K,JON E P,VEGARD A,et al.Experimental and numerical studies on the structural response of normal strength concrete slabs subjected to blast loading[J].Engineering Structures,2018,174.
[2]LIU Y,YAN J B,HUANG F L.Behavior of reinforced concrete beams and columns subjected to blast loading[J].Defence Technology,2018,14(5):550-559.
[3]田志敏,邬玉斌,罗奇峰.隧道内爆炸冲击波传播特性及爆炸荷载分布规律研究[J].振动与冲击,2011,30(1):21-26. TIAN Zhimin,WU Yubin,LUO Qifeng.Study on the propagation characteristics of explosion shock wave and the distribution law of explosive load in tunnel[J].Journal of Vibration and Shock,2011,30(1):21-26.
[4]邬玉斌,田宇隆,张斌.地下建筑内爆炸冲击波荷载分布规律研究[J].武汉理工大学学报,2012,34(9):88-93,148. WU Yubin,TIAN Yulong,ZHANG Bin.Study on the distribution law of explosion shock wave load in underground buildings[J].Journal of Wuhan University of Technology,2012,34(9):88-93,148.
[5]孙惠香,许金余,朱国富,等.爆炸荷载作用下围岩与地下结构的动力相互作用[J].爆炸与冲击,2013,33(5):519-524. SUN Huixiang,XU Jinyu,ZHU Guofu,et al.Dynamic interaction between surrounding rock and underground structure under blast loading[J].Explosion and Shock Waves,2013,33(5):519-524.
[6]胡时胜,王礼立,宋力,等.Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击,2014,34(6):641-657. HU Shisheng,WANG Lili,SONG Li,et al.Review of the development of Hopkinson pressure bar technology in China [J].Explosion and Shock Waves,2014,34 (6):641-657.
[7]WANG L,HU S,YANG L,et al.Development of experimental methods for impact testing by combining hopkinson pressure bar with other techniques[J].Acta Mechanica Solida Sinica,2014,27(4):331-344.
[8]方秦,洪建,张锦华,等.混凝土类材料SHPB实验若干问题探讨[J].工程力学,2014,31(5):1-14. FANG Qin,HONG Jian,ZHANG Jinhua,et al.Discussion on some problems of SHPB experiment of concrete materials[J].Engineering Mechanics,2014,31(5):1-14.
[9](美)陈为农,(美)宋博著.姜锡权,卢玉斌译.分离式霍普金森(考尔斯基)杆:设计、试验和应用[M].北京:国防工业出版社,2018.
[10]许金余,刘石.岩石的高温动力学特性[M].西安:西北工业大学出版社,2016.
[11]李为民,许金余,沈刘军,等.Φ100 mm SHPB应力均匀及恒应变率加载试验技术研究[J].振动与冲击,2008,27(2):129-132,181-182. LI Weimin,XU Jinyu,SHEN Liujun,et al.Study on stress uniformity and constant strain rate loading test technology of Φ100 mm SHPB[J].Journal of Vibration and Shock,2008,27(2):129-132,181-182.
[12]李夕兵,王世鸣,宫凤强,等.不同龄期混凝土多次冲击损伤特性试验研究[J].岩石力学与工程学报,2012,31(12):2465-2472. LI Xibing,WANG Shiming,GONG Fengqiang,et al.Experimental study on multiple impact damage characteristics of concrete at different ages[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(12):2465-2472.
[13]李夕兵,王世鸣,周韬,等.不同冲击条件下早龄期混凝土的力学特性[J].中国有色金属学报,2015,25(6):1672-1677. LI Xibing,WANG Shiming,ZHOU Tao,et al.Mechanical properties of early age concrete under different impact conditions[J].The Chinese Journal of Nonferrous Metals,2015,25(6):1672-1677.
[14]王世鸣.冲击荷载下早龄期混凝土力学和损伤特性的试验研究[D].长沙:中南大学,2014.
[15]TOPCU I B,AVCULAR N.Collision behaviours of rubberized concrete[J].Cement & Concrete Research,1997,27(12):1893-1898.
[16]ATAHAN A O,SEVIM U K.Testing and comparison of concrete barriers containing shredded waste tire chips[J].Materials Letters,2008,62(21-22):3754-3757.
[17]郭永昌,刘锋,陈贵炫,等.橡胶混凝土的冲击压缩试验研究[J].建筑材料学报,2012,15(1):139-144. GUO Yongchang,LIU Feng,CHEN GuiXuan,et al.Experimental study on impact compression of rubber concrete[J].Journal of Building Materials,2012,15(1):139-144.
[18]徐松林,王鹏飞,赵坚,等.基于三维Hopkinson杆的混凝土动态力学性能研究[J].爆炸与冲击,2017(2):15-20. XU Songlin,WANG Pengfei,ZHAO Jian,et al.Dynamic mechanical properties of concrete based on 3D hopkinson rod[J].Explosion and Shock Waves,2017(2):15-20.
[19]聂良学,许金余,刘志群,等.盐腐蚀后混凝土的动态本构模型[J].爆炸与冲击,2017,37(4):712-718. NIE Liangxue,XU Jinyu,LIU Zhiqun,et al.Dynamic constitutive model of concrete after salt corrosion[J].Explosion and Shock Waves,2017,37(4):712-718.
[20]王宏伟,许金余,任韦波,等.高温后混凝土动态本构模型研究[J].建筑科学,2017,33(3):65-69. WANG Hongwei,XU Jinyu,REN Weibo,et al.Study on dynamic constitutive model of concrete after high temperature[J].Building Science,2017,33(3):65-69.
[21]尹跃刚,许金余,聂良学,等.混凝土冲击破坏的分形研究[J].硅酸盐通报,2014,33(5):1159-1162,1168. YIN Yuegang,XU Jinyu,NIE Liangxue,et al.Fractal study on impact failure of concrete[J].Bulletin of the Chinese Ceramic Society,2014,33(5):1159-1162,1168.
[22]李志武,许金余,戴双田,等.高温下混凝土冲击加载试验研究[J].高压物理学报,2013,27(3):417-422. LI Zhiwu,XU Jinyu,DAI Shuangtian,et al.Experimental study on impact loading of concrete under high temperature[J].Chinese Journal of High Pressure Physics,2013,27(3):417-422.
[23]李夕兵,刘德顺,古德生.消除岩石动态实验曲线振荡的有效途径[J].中南工业大学学报,1995(4):457-460. LI Xibing,LIU Deshun,GU Desheng.An effective way to eliminate the oscillation of rock dynamic experiment curves[J].Journal of Central South University of Technology,1995(4):457-460.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2019-09-20;数字出版日期: 2019-12-25
* 基金项目: 国家自然科学基金项目(11862010)
作者简介: 秦浩,硕士研究生,主要研究方向为岩石动力学、土木工程。
通信作者: 安华明,博士,主要研究方向为岩石力学、工程爆破。
更新日期/Last Update: 2020-01-09