|本期目录/Table of Contents|

[1]胡嘉伟,毛军,郗艳红,等.隧道内偏置火源顶棚近壁面温度边界层效应研究[J].中国安全生产科学技术,2019,15(12):36-40.[doi:10.11731/j.issn.1673-193x.2019.12.006]
 HU Jiawei,MAO Jun,XI Yanhong,et al.Research on temperature boundary layer effect at near wall of ceiling for offset fire source in tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(12):36-40.[doi:10.11731/j.issn.1673-193x.2019.12.006]
点击复制

隧道内偏置火源顶棚近壁面温度边界层效应研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
15
期数:
2019年12期
页码:
36-40
栏目:
特邀专栏
出版日期:
2019-12-31

文章信息/Info

Title:
Research on temperature boundary layer effect at near wall of ceiling for offset fire source in tunnel
文章编号:
1673-193X(2019)-12-0036-05
作者:
胡嘉伟毛军郗艳红刘斌林振瑶李桂强郭汝杰
(1.北京交通大学 土木建筑学院,北京 100044;
2.深圳市交通公用设施建设中心,广东 深圳 518040)
Author(s):
HU Jiawei MAO Jun XI Yanhong LIU Bin LIN Zhenyao LI Guiqiang GUO Rujie
(1.School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China;
2.Shenzhen Transportation and Public Facilities Construction Center,Shenzhen Guangdong 518040,China)
关键词:
隧道火灾偏置火源顶棚温度温度边界层
Keywords:
tunnel fire offset fire source ceiling temperature temperature boundary layer
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2019.12.006
文献标志码:
A
摘要:
基于隧道火灾不同横向火源位置的非对称卷吸影响,通过模拟计算分析了中心火源和偏置火源产生的烟气沿纵向最大温升变化规律,研究了顶棚下方近壁面区域内的不同温度分布,提出偏置火源纵向空间最大顶棚温升公式。结果表明:在壁面黏性作用下,沿纵向蔓延的烟气最高温度在顶棚下方呈现“温度边界层”分布;随着火源位置的偏移,下游出现偏置距离起主导作用影响温度衰减的区域,衰减速度相较于中心火源逐渐降低;火源下游近壁面最高温度位置逐渐远离顶棚后趋于稳定。研究结果对于排烟方式的设计以及空间通风效果的提升有着重要意义。
Abstract:
Based on the asymmetric entrainment effect of different transverse fire source locations in the tunnel fire,the change laws of the longitudinal maximum temperature rise of smoke generated by the central fire source and the offset fire source were analyzed through the numerical calculation.The difference of temperature distribution in the near wall area under the ceiling was studied,and the formula form of longitudinal maximum temperature rise at the ceiling for the offset fire source was put forward.The results showed that under the effect of wall viscosity,the maximum temperature of smoke spreading along the longitudinal direction under the ceiling presented the distribution form of “temperature boundary layer”.With the offset of fire source location,the area that the offset distance played the leading role to affect the temperature attenuation appeared in the downstream,and the attenuation rate was lower than that of the central fire source.The maximum temperature location near the wall gradually increased to a stable distance from the ceiling.

参考文献/References:

[1]JI J,FU YY,FAN C G,et al.An experimental investigation on thermal characteristics of sidewall fires in corridor-like structures with varying width[J].International Journal of Heat and Mass Transfer,2015,84(5):562-570.
[2]GAO Z H,JI J,FAN C G,et al.Influence of sidewall restriction on the maximum ceiling gas temperature of buoyancy-driven thermal flow[J].Energy and Buildings,2014,84(12):13-20.
[3]GAO Z,JI J,WAN H,et al.An investigation of the detailed flame shape and flame length under the ceiling of a channel [J].Proceedings of the Combustion Institute,2015,35 (3):2657-2664.
[4]GAO Z H,LIU Z X,WAN H X,et al.Experimental study on longitudinal and transverse temperature distribution of sidewall confined ceiling jet plume[J].Applied Thermal Engineering,2016,107(8):583-590.
[5]FAN C G,JI J,LI Y Z,et al.Experimental study of sidewall effect on flame characteristics of heptane pool fires with different aspect ratios and orientations in a channel[J].Proceedings of the Combustion Institute,2017,36(2):3121-3129.
[6]ZHOU T,HE Y,LIN X,et al.Influence of constrainteffect of sidewall on maximum smoke temperature distribution under a tunnel ceiling[J].Applied Thermal Engineering,2017,112(2):932-941.
[7]ALPERT R L .Calculation of response time of ceiling-mounted fire detectors[J].Fire Technology,1972,8(3):181-195.
[8]DELICHATSIOSM A.The flow of fire gases under a beamed ceiling[J].Combustion and Flame,1981,43:1-10.
[9]史聪灵,钟茂华,汪良旗,等.地铁车站及隧道全尺寸火灾实验研究(3)—车站隧道火灾[J].中国安全生产科学技术,2013,9(3):26-33. SHI Congling,ZHONG Maohua,WANG Liangqi,et al.Investigation of full-scale burning experiments in metro station and tunnel (3)—station tunnel fires[J].Journal of Safety Science and Technology,2013,9(3):26-33.
[10]史聪灵,钟茂华,汪良旗,等.地铁车站及隧道全尺寸火灾实验研究(2)—区间隧道火灾[J].中国安全生产科学技术,2012,8(8):28-34. SHI Congling,ZHONG Maohua,WANG Liangqi,et al.Investigation of full-scale burning experiments in metro station and tunnel (2)—interval tunnel fires[J].Journal of Safety Science and Technology,2012,8(8):28-34.
[11]王彦富,蒋军成,龚延风,等.全尺寸隧道火灾实验研究与烟气逆流距离的理论预测[J].中国安全科学学报,2007,17(8):37-41. WANG Yanfu,JIANG Juncheng,GONG Yanfeng,et al.Test research of full-scale tunnel fire and theoretical prediction on the distance of smoke regressing [J].China Safety Science Journal,2007,17(8):37-41.
[12]LI Y Z,LEI B,INGASON H .The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires[J].Fire Safety Journal,2011,46(4):204-210.
[13]YE K,ZHOU X D,ZHENG Y,et al.Estimating the longitudinal maximum gas temperature attenuation of ceiling jet flow generated by strong fire plumes in an urban[J].International Journal of Thermal Science,2019,142(8):434-448.
[14]JI J,FAN C G,ZHONG W,et al.Experimental investigation on influence ofdifferent transverse fire locations on maximum smoke temperature under the tunnel ceiling[J].International Journal of Heat and Mass Transfer,2012,55(17):4817-4826.
[15]FAN C G,JI J,GAO Z H,et al.Experimental study on transverse smoke temperature distribution in road tunnel fires[J].Tunnelling and Underground Space Technology,2013,37(8):89-95.
[16]MCGRATTAN K B,HOSTIKKA S,FLOYD J E,et al. Fire dynamicssimulator(version 5):user’s guide[J].NIST Special Publication,2007,4(4) :206-207.
[17]YASUSHI O,HIDEYUKI O,IMAZEKI O.Ceiling-jet thickness and vertical distribution along flat-ceilinged horizontal tunnel with natural ventilation[J].Tunnelling and Underground Space Technology,2016,53(3):68-77.

相似文献/References:

[1]王婉娣,张靖岩,冯炼,等.纵向通风对长大隧道火灾烟流控制分析[J].中国安全生产科学技术,2010,6(3):28.
 WANG Wan-di,ZHANG Jing-yan,FENG Lian,et al.Three-dimensional simulation analysis of smoke flow controlled by longitudinal ventilation in long tunnel fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(12):28.
[2]刘晓阳,李炎锋,李俊梅,等.纵向通风条件下对隧道内烟气运动影响 因素的实验研究[J].中国安全生产科学技术,2012,8(4):24.
 LIU Xiao yang,LI Yan feng,LI Jun mei,et al.Experimental study on the effect of longitudinal ventilation and factors on smoke movement in tunnels[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(12):24.
[3]陈震,姚斌,王文伟,等.隧道型细水雾灭火系统在公路隧道的设计与应用[J].中国安全生产科学技术,2013,9(7):144.[doi:10.11731/j.issn.1673-193x.2013.07.026]
 CHEN Zhen,YAO Bin,WANG Wen wei,et al.Design and application of tunneltype water mist fire suppression system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(12):144.[doi:10.11731/j.issn.1673-193x.2013.07.026]
[4]崔铁军,马云东.均匀火灾温场下隧道管片受力分析[J].中国安全生产科学技术,2014,10(5):37.[doi:10.11731/j.issn.1673-193x.2014.05.006]
 CUI Tiejun,MA Yundong.Internal forces analysis for tunnel segment under fire based on the coupled fluidmechanical-thermal model in uniform temperature field[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(12):37.[doi:10.11731/j.issn.1673-193x.2014.05.006]
[5]黄有波,吕淑然,杨凯.火源功率与隧道阻塞比对临界风速变化规律影响研究[J].中国安全生产科学技术,2015,11(8):10.[doi:10.11731/j.issn.1673-193x.2015.08.002]
 HUANG You-bo,LV Shu-ran,YANG Kai.Study on influence law of fire power and blockage ratio on critical wind velocity in tunnel fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(12):10.[doi:10.11731/j.issn.1673-193x.2015.08.002]
[6]李垣志,牛国庆,张轩轩.城市公路隧道火灾近火源区长度的研究[J].中国安全生产科学技术,2017,13(12):43.[doi:10.11731/j.issn.1673-193x.2017.12.007]
 LI Yuanzhi,NIU Guoqing,ZHANG Xuanxuan.Research on length of area near fire source in urban highway tunnel fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(12):43.[doi:10.11731/j.issn.1673-193x.2017.12.007]

备注/Memo

备注/Memo:
收稿日期: 2019-12-12
* 基金项目: 国家重点基础研究项目(2016YFC0802206);国家自然科学基金项目(51578061);深圳市建设工程科研课题(BYTD-KT-002)
作者简介: 胡嘉伟,博士研究生,主要研究方向为传热传质理论与防灾减灾技术。
更新日期/Last Update: 2020-01-09